THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2050B Mathematical Analysis I Tutorial 10 (November 14)

The following were discussed in the tutorial this week:

- 1. Definition of uniformly continuous function, nonuniform continuity criteria, uniform continuity theorem,
- 2. Determine if the following functions are uniformly continuous:
 - (a) $f: [0, \infty) \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$,
 - (b) $f : \mathbb{R} \to \mathbb{R}$ defined yby $f(x) = \cos(x^2)$.
- 3. Prove that if f is uniformly continuous on a bounded subset A of \mathbb{R} , then f is bounded on A.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Suppose $\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = \ell \in \mathbb{R}$. Show that f is uniformly continuous on \mathbb{R} .
- 5. A function $f : \mathbb{R} \to \mathbb{R}$ is said to be periodic on \mathbb{R} if there exists a number p > 0 such that f(x+p) = f(x) for all $x \in \mathbb{R}$. Prove that a continuous periodic function on \mathbb{R} is uniformly continuous on \mathbb{R} .