TA's selected solution to 2050B Test 2

1. (a). (x_n) converges to ℓ if and only if

 $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \ge N, \text{ we have } |x_n - \ell| < \varepsilon.$

 (x_n) does not converge to ℓ if and only if

$$\exists \varepsilon > 0 \text{ s.t. } \forall N \in \mathbb{N}, \ \exists n \ge N \text{ s.t. } |x_n - \ell| \ge \varepsilon.$$

Steps:

Not $(\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \ge N, \text{ we have } |x_n - \ell| < \varepsilon)$ = $\exists \varepsilon > 0$ s.t. Not $(\exists N \in \mathbb{N} \text{ s.t. } \forall n \ge N, \text{ we have } |x_n - \ell| < \varepsilon)$ = $\exists \varepsilon > 0$ s.t. $\forall N \in \mathbb{N}$ Not $(\forall n \ge N, \text{ we have } |x_n - \ell| < \varepsilon)$ = $\exists \varepsilon > 0$ s.t. $\forall N \in \mathbb{N}$ $\exists n \ge N$ s.t. Not (we have $|x_n - \ell| < \varepsilon)$ = $\exists \varepsilon > 0$ s.t. $\forall N \in \mathbb{N} \exists n \ge N$ s.t. Not (we have $|x_n - \ell| < \varepsilon$) = $\exists \varepsilon > 0$ s.t. $\forall N \in \mathbb{N} \exists n \ge N$ s.t. $|x_n - \ell| \ge \varepsilon$

(b). f(x) converges to ℓ as $x \to x_0$ if and only if: Given any $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in D$ with $0 < |x - x_0| < \delta$, we have $|f(x) - \ell| < \varepsilon$.*

f(x) does not converge to ℓ as $x \to x_0$ if and only if: There exists $\varepsilon > 0$ such that for any $\delta > 0$, we can find some $x \in D$ with $0 < |x - x_0| < \delta$ such that $|f(x) - \ell| \ge \varepsilon$.

3. Please refer to Prof. Ng's lecture notes in the course web page.

^{*}There are 3 conditions on x. The first is $|x - x_0| < \delta$ which means x is close to x_0 . The second is $x \in D$ so that f(x) is defined. The third is $x \neq x_0$ (i.e. $|x - x_0| > 0$); think about the case $x_0 := 1$ and $f(x) := \begin{cases} x \text{ if } x \neq 1 \\ 2 \text{ if } x = 1. \end{cases}$