Selected solution to 2050B Mid-term

3. (i). Note that for $x < 1$ and $M > 0$, one has the following equivalences:

$$
\frac{x}{x-1} < -M \Leftrightarrow \frac{x}{1-x} > M
$$
\n
$$
\Leftrightarrow x > M - xM
$$
\n
$$
\Leftrightarrow x(1+M) > M
$$
\n
$$
\Leftrightarrow x > \frac{M}{1+M}.
$$

Suggested by the last equivalence, we would like to have $\frac{M}{1+M}$ $1−δ$, so we set $δ := 1 - \frac{M}{1+i}$ $\frac{M}{1+M}$. Note that $\delta > 0$, and if $x \in (1-\delta, 1)$, one has $\frac{M}{1+M} = 1 - \delta < x < 1$, whence $\frac{x}{x-1} < -M$. This shows that *x*

$$
\lim_{x \to 1^-} \frac{x}{x-1} = -\infty,
$$

because for any $r \in \mathbb{R}$ there exists $M > 0$ such that $-M < r$.

On the other hand, for $x > 1$, we have

$$
\frac{x}{x-1} = \frac{x}{|x-1|} > \frac{1}{|x-1|}.
$$

Hence, for any $M > 0$, if we set $\delta := \frac{1}{M}$, then for all $x \in (1, 1 + \delta)$, we have

$$
\frac{x}{x-1} > \frac{1}{\delta} = M.
$$

This shows that

$$
\lim_{x \to 1^+} \frac{x}{x - 1} = \infty.
$$

Finally, since

$$
\lim_{x \to 1^{-}} \frac{x}{x - 1} \neq \lim_{x \to 1^{+}} \frac{x}{x - 1},
$$

we see that $\lim_{x\to 1} \frac{x}{x-1}$ $\frac{x}{x-1}$ does not exist.^{*}

[∗]An alternative approach for question 3(i) is to use the result of question 2(ii).

(ii). (It seems that the function in consideration is continuous, so we guess that the limit is $\sqrt{x_0^2 + 1}$ Firstly, note that

$$
\left| \sqrt{x^2 + 1} - \sqrt{x_0^2 + 1} \right| = \left| \frac{x^2 - x_0^2}{\sqrt{x^2 + 1} + \sqrt{x_0^2 + 1}} \right|
$$

$$
= \frac{|x - x_0| \, |x + x_0|}{\sqrt{x^2 + 1} + \sqrt{x_0^2 + 1}}.
$$

By the elementary inequality $\frac{|x|}{\sqrt{x^2+1}} \leq 1$, we have

$$
\frac{|x+x_0|}{\sqrt{x^2+1}+\sqrt{x_0^2+1}} \le \frac{|x|+|x_0|}{\sqrt{x^2+1}+\sqrt{x_0^2+1}}
$$
\n
$$
= \frac{|x|}{\sqrt{x^2+1}+\sqrt{x_0^2+1}} + \frac{|x_0|}{\sqrt{x^2+1}+\sqrt{x_0^2+1}}
$$
\n
$$
\le \frac{|x|}{\sqrt{x^2+1}} + \frac{|x_0|}{\sqrt{x_0^2+1}}
$$
\n
$$
\le 1+1=2.
$$

Therefore

$$
\left| \sqrt{x^2 + 1} - \sqrt{x_0^2 + 1} \right| \le 2 \left| x - x_0 \right|,
$$

which is nice enough for us to apply the ε - δ terminology.

Let $\varepsilon > 0$. For this ε , we set $\delta_{\varepsilon} := \varepsilon/2$. Now whenever *x* satisfies $0 < |x - x_0| < \delta_{\varepsilon}$, we have

$$
\left| \sqrt{x^2 + 1} - \sqrt{x_0^2 + 1} \right| \le 2 \left| x - x_0 \right|
$$

<
$$
< 2 \cdot \delta_{\varepsilon} = \varepsilon.
$$

By ε - δ terminology, we conclude that

$$
\lim_{x \to x_0} \sqrt{x^2 + 1} = \sqrt{x_0^2 + 1}.
$$

(iii). Let $\varepsilon > 0$. Set $\delta := \min(1, \frac{\varepsilon}{2(5+\varepsilon)}$ $\frac{\varepsilon}{2(5+M)}$), where

$$
M := (|x_0| + 1)^2 + (|x_0| + 1) |x_0| + |x_0|^2.
$$

Let $0 < |x - x_0| < \delta$. One checks $|f(x) - f(x_0)| < \varepsilon$ where $f(x) = x^3 - 5x - 7:$

$$
\begin{aligned} \left| (x^3 - 5x - 7) - (x_0^3 - 5x_0 - 7) \right| \\ &\le \left| x^3 - x_0^3 \right| + 5 \left| x - x_0 \right| \\ &= \left| x - x_0 \right| \left| x^2 + x x_0 + x_0^2 \right| + 5 \left| x - x_0 \right| \\ &\le \left(M + 5 \right) \left| x - x_0 \right| \quad \text{(as } \left| x - x_0 \right| < \delta \le 1 \text{ so } \left| x \right| < \left| x_0 \right| + 1 \text{)} \\ &\le \frac{\varepsilon}{2} < \varepsilon. \end{aligned}
$$

By $ε$ - $δ$ terminology, we conclude that

$$
\lim_{x \to x_0} (x^3 - 5x - 7) = x_0^3 - 5x_0 - 7.
$$

Second approach:

Firstly, we have the following result:

$$
\lim_{x \to x_0} (f_1(x) f_2(x)) = (\lim_{x \to x_0} f_1(x)) \cdot (\lim_{x \to x_0} f_2(x))
$$

if $\lim_{x\to x_0} f_i(x)$ exists.

Therefore, since $\lim_{x\to x_0} x$ exists and equals x_0 , we have

$$
\lim_{x \to x_0} x^2 = x_0^2,
$$

and so

$$
\lim_{x \to x_0} x^3 = (\lim_{x \to x_0} x^2) \cdot (\lim_{x \to x_0} x) = x_0^3.
$$

Similarly, since $\lim_{x \to x_0} (-5) = -5$, the foregoing result for limits gives

$$
\lim_{x \to x_0} -5x = -5x_0.
$$

Next, we have the following result:

$$
\lim_{x \to x_0} (f_1(x) + f_2(x)) = \lim_{x \to x_0} f_1(x) + \lim_{x \to x_0} f_2(x)
$$

if $\lim_{x\to x_0} f_i(x)$ exists.

Therefore, since $\lim_{x\to x_0} x^3$ and $\lim_{x\to x_0} -5x$ exists, we have

$$
\lim_{x \to x_0} (x^3 - 5x) = \lim_{x \to x_0} x^3 + \lim_{x \to x_0} (-5x) = x_0^3 - 5x_0.
$$

Finally, since $\lim_{x \to x_0} (-7) = -7$, by applying the foregoing result once more, we have

$$
\lim_{x \to x_0} (x^3 - 5x - 7) = \lim_{x \to x_0} (x^3 - 5x) + \lim_{x \to x_0} (-7) = x_0^3 - 5x_0 - 7.
$$

5. We have $\liminf_{n} x_n = \lim_{n \to \infty} y_n$, where y_n is defined by $y_n := \inf\{x_n, x_{n+1}, x_{n+2}, \ldots\}$.

Brief explanation (FYR only, need not be given in the answer): Since

{
$$
x_1, x_2, x_3, x_4, \ldots
$$
} \supseteq { x_2, x_3, x_4, \ldots }
 \supseteq { x_3, x_4, \ldots }
 $\supseteq \cdots$,

therefore

$$
\inf\{x_1, x_2, x_3, x_4, \ldots\} \le \inf\{x_2, x_3, x_4, \ldots\} \le \inf\{x_3, x_4, \ldots\} \le \cdots
$$

Define $y_n := \inf\{x_n, x_{n+1}, x_{n+2}, \ldots\}$. By above we see that (y_n) is an increasing sequence. It is bounded above as well, because (x_n) is a bounded sequence. By monotone convergence theorem, $\lim_{n\to\infty} y_n$ exists. We take

$$
\liminf_{n} x_n = \lim_{n \to \infty} y_n.
$$