TA's solution to 2050B homework 5

- 1. (2 marks) Monotone convergence theorem states that if (ξ_n) is a bounded decreasing sequence, then $\lim \xi_n$ exists and $\lim \xi_n = \inf \{\xi_n : n \in \mathbb{N}\}.$ Apply it to (y_n) , the result follows.
- 2. (4 marks)
	- (a) (*⇒*)

Suppose $y^* \leq \alpha$. Let $\varepsilon > 0$. Since $\lim y_n = y^*$, $\exists N \in \mathbb{N}$ such that $y_n < \alpha + \varepsilon$ for all $n \geq N$ (c.f. homework II 4(b)). In particular, $\sup\{x_N, x_{N+1}, \ldots\} = y_N < \alpha + \varepsilon$. Therefore $\alpha + \varepsilon$ is greater than an upper bound of $\{x_N, x_{N+1}, ...\}$. It follows that $x_n < \alpha + \varepsilon$ for all $n \geq N$.

 (\Leftarrow)

Let $\varepsilon > 0$. By assumption, $\exists N \in \mathbb{N}$ such that $x_n < \alpha + \varepsilon$ for all $n \geq N$. Therefore $\alpha + \varepsilon$ is an upper bound of the $\{x_N, x_{N+1}, \ldots\}$, so $\alpha + \varepsilon \ge \sup\{x_N, x_{N+1}, \ldots\} = y_N$. Since (y_n) is a decreasing sequence, we have $\alpha + \varepsilon \geq y_n$ whenever $n \geq N$. Hence

$$
\alpha + \varepsilon = \lim_{n \to \infty} (\alpha + \varepsilon) \ge \lim_{n \to \infty} (y_n) = y^*.
$$

Since $\varepsilon > 0$ is arbitrary, we conclude that $\alpha \geq y^*$.

(b) (*⇒*)

Suppose $\alpha \leq y^*$. Let $\varepsilon > 0$. Since $\lim y_n = y^*$, $\exists M \in \mathbb{N}$ such that $\alpha - \varepsilon < y_n$ for all $n \geq M$ (c.f. homework II 4(b)). Now for any $N \in$ N, we have $\alpha - \varepsilon < y_{\max(M,N+1)} = \sup\{x_{\max(M,N+1)}, x_{\max(M,N+1)+1}, \ldots\}.$ As α − ε is less than the supremum of $\{x_{\max(M,N+1)}, x_{\max(M,N+1)+1}, \ldots\}$ it fails to be an upper bound of that set. Hence, $\exists n \geq \max(M, N+)$ 1) such that $\alpha - \varepsilon < x_n$. Done.

(*⇐*)

Let $\varepsilon > 0$. Given $N \in \mathbb{N}$, by assumption $\exists \ell > N$ such that $\alpha - \varepsilon < x_{\ell}$. Then $\alpha - \varepsilon \le \sup\{x_N, x_{N+1}, \ldots, x_{\ell}, x_{\ell+1}, \ldots\} = y_N$. Since this holds for all $N \in \mathbb{N}$, we have

$$
\alpha - \varepsilon = \lim_{n \to \infty} (\alpha - \varepsilon) \le \lim_{n \to \infty} (y_n) = y^*.
$$

Since $\varepsilon > 0$ is arbitrary, we conclude that $\alpha \leq y^*$.

3. (2 marks)

(a) When
$$
(x_n) = (1/n)
$$
,
\n• $y_n = 1/n$
\n• $y^* = 0$
\n• $V = (0, \infty)$
\n• $L = \{0\}$
\n(b) When $(x_n) = (1 - 1/n)$,
\n• $y_n = 1$
\n• $y^* = 1$
\n• $V = [1, \infty)$
\n• $L = \{1\}$

4. (2 marks)

Let *u* be an upper bound of (x_n) . Then $x_n \leq u \ \forall n \geq 1$. Referring to the definition, we see that *u* is an essential upper bound of (x_n) .

Let *l* be a lower bound of (x_n) . Then $l \leq x_n \ \forall n \geq 1$. If $v \in V$, then *∃N* s.t. $x_n \leq v \ \forall n \geq N$. Now $l \leq x_N \leq v$. Since $v \in V$ is chosen arbitrarily, this shows that *l* is a lower bound of *V* .

Since (x_n) is bounded, it has an upper and lower bound. Therefore, by the first paragraph, *V* is non-empty, while by the second paragraph, *V* is bounded below. Hence, inf *V* exists in R.

- 5. We show the following:
	- inf $V = y^*$;
	- There exists a subsequence (x_{n_k}) of (x_n) such that $\lim_k x_{n_k} = y^*$;
	- $\sup L = y^*$.

(Since $y^* \in L$ by the second statement, it then follows from the third statement that $\max L = y^*$

(a) To show inf $V = y^*$, we go to show that y^* is a lower bound of V, while $y^* + \varepsilon$ fails to be a lower bound of *V* for any $\varepsilon > 0$.

Let $v \in V$. By the definition of *V*, there exists $N_v \in \mathbb{N}$ such that $x_n \leq v \ \forall n \geq N_v$. It follows from question 2(a) that $y^* \leq v$. Since $v \in V$ is arbitrarily chosen, we see that y^* is a lower bound of *V*.

On the other hand, given $\varepsilon > 0$, since $\lim y_n = y^*$, there exists $N \in \mathbb{N}$ such that $y_N \leq y^* + \varepsilon/2$ (c.f. homework II question 4(b)). Therefore, by the definition of y_N , we have $x_n \leq y^* + \varepsilon/2$ for all $n \geq N$. This means $y^* + \varepsilon/2$ is an essential upper bound of (x_n) , i.e. $y^* + \varepsilon/2 \in V$. Hence $y^* + \varepsilon$ cannot be a lower bound of *V*.

(b) By question 2(b), $\exists n_1 > 1$ such that $x_{n_1} > y^* - 1$ (take $\alpha = y^*$, $\varepsilon = 1, N = 1$.

Next, by question 2(b), $\exists n_2 > n_1$ such that $x_{n_2} > y^* - 1/2$ (take $\alpha = y^*, \, \epsilon = 1/2, \, N = n_1$).

Then, by question 2(b) again, $\exists n_3 > n_2$ such that $x_{n_3} > y^* - 1/3$ $(\text{take } \alpha = y^*, \varepsilon = 1/3, N = n_2).$

Continuing this process by induction, we construct a subsequence (x_{n_k}) of (x_n) such that $x_{n_k} \geq y^* - 1/k$ for all *k*. Since

$$
y^* - \frac{1}{k} \le x_{n_k} \le \sup\{x_{n_k}, x_{n_k+1}, ...\} = y_{n_k},
$$

and that

$$
\lim_{k \to \infty} (y^* - \frac{1}{k}) = y^* = \lim_{k \to \infty} y_{n_k},
$$

we conclude that (x_{n_k}) converges to y^* by squeeze theorem.

(c) To show $\sup L = y^*$, we go to show that y^* is an upper bound of *L*, while $y^* - \varepsilon$ fails to be an upper bound of *L* for any $\varepsilon > 0$.

Let $\ell \in L$. Then by the definition of *L*, there exists (x_{n_k}) such that $\lim_k x_{n_k} = \ell$. Since $x_{n_k} \leq \sup\{x_{n_k}, x_{n_k+1}, \ldots\} = y_{n_k}$, it follows that

$$
\ell = \lim_{k \to \infty} x_{n_k} \le \lim_{k \to \infty} y_{n_k} = y^*.
$$

Since $\ell \in L$ is arbitrarily chosen, we see that y^* is an upper bound of *L*.

On the other hand, by (b), we see that $y^* \in L$, so $y^* - \varepsilon$ cannot be an upper bound of *L* for any *ε >* 0.