TAs’ solution® to 2050B assignment 2
1. (3 marks)

e min A does not exist.
If mg = min A exists, then by the definition of "min”, we have
mg € A and my < a Va € A. Therefore 0 < my < a < 1 for all
a € A (the first and last inequality come from the definition of
A).
Note that my/2 € A as 0 < my < 1. Thus we have 0 < mg <
mo/2, which is impossible.
Hence min A does not exist.

e« inf A=0.
Let [p = 0. Noting that [y is a lower bound of A, it remains to

show that for any € > 0, lp+¢ is not a lower bound of A (no matter
min(e,1)

how small € is). It follows by the observation that a := ==

satisfies a € A and a < [y + €.
(Remark: Notice that inf A exists in R but does not exist in A.)

e maxA = 1.
Simply note that 1 € A and a <1 for all a € A.

e supA=1.
It is because for any B C R, if max B exists, then sup B = max B.
Reason: On the one hand, max B is an upper bound of B. On the
other hand, given any € > 0, max B — ¢ fails to be an upper bound
of B, because by := max B satisfies by € B and max B — € < by.

2. e min S does not exist.

Suppose min S exists. By the definition of "min”, min S is an

element in S, so there exists ng, mg € N such that min § = + —-L

no mg °
But then minS > - — L As —L_ — L =G this contradicts
no+1 mo no+1 mo ’
the minimality of min.S. Hence min S does not exist.
e infS =-1.

Noting that —1 is a lower bound of S, it remains to show that for
any € > 0, —1 4 € is not a lower bound of S. Recall that by the
Archimedean Property, there exists ng € N such that 0 < n—lo < €.

! This solution is adapted from the work by former TAs.



Hence —1 + nio < —1+e€. Since —1 + n—lo = nio — % € S, the result
follows.

e max.S does not exists.
One can use similar reasoning as for min.
Alternatively, for any B C R, if we denote {z € R: —x € B} by
—B, then we have: (—1) x max B = min(—B) (either both sides
exist or do not exist), because:

bp € B o —by € —B
b<byVbe B —bogb/\V/bIE—B
Observe that S = —§.
e supS = 1.
One can use similar reasoning as for inf.

Alternatively, observe that for any B C R, we have (—1)xsup B =
inf(—B) (either both sides exist or do not exist), because:

up is an upper bound of B —ug is a lower bound of —B
uy — € < b for some b € B b < —ug + € for some b € —B

3. (4 marks)

For convenience, write fi; = f, fo = g, and f;(X) = {fi(x) : z € X}.
Note that for i = 1,2, f; is bounded above, so the set f;(X) is bounded
above too. By completeness, the supremum for the set f;(X), denoted
by sup[f;(X)], exists.

For each y € X, since f;(y) € fi(X), fi(y) cannot be greater than
the supremum of f;(X), so fi(y) < sup[f;(X)]. Adding up, we have
fiy) + fo(y) < sup|fi(X)] + sup[f2(X)]. This inequality holds for all
y e X.

Therefore, the set (fi + f2)(X) = {fi(x) + fo(z) : € X} is bounded
above by the value sup[fi(X)] + sup[f2(X)], so the supremum of this
set cannot be greater than that value. This means

sup[(f1 + f2)(X)] < sup[f1(X)] + sup[f2(X)].

Strict inequality can happen. For example, take X = {—1,1}, fi(z) :=
z, fo = —f1. Then fi(X) = fo(X) = {-1,1}, while (fi + f2)(X) =

2



{0}. So
0 = sup[(f1 + f2)(X)] < sup[fi(X)] +sup[fo(X)] =1+1=2.

Equality can also happen: Take X = {0}, f;(z) = x. Then f1(X) =
fo(X) = (fi + fo)(X) = {0}, so

0 = sup[(f1 + f2)(X)] = sup[f1(X)] + sup[f2(X)].

We handle inf similarly?. Assuming f; is bounded below function on
X so that inf[f;(X)] exists, we have, for any y € X,

{ inf[f,(X)] < fi(y)
inf[f2(X)] < fa(y)

SO inf{fl (X)] + inf[f2(X)] is a lower bound of (f; + f2)(X), and conse-
quently
inf[f, (X)) + inf{£2(X)] < if[(fy + £2) (V)]

The first example above gives strict inequality (—2 < 0), while the
second example gives equality (0 = 0).

4. (a). Let ¢ > 0. Then there exists N € N such that for all n > N,
|z, — 2| <e.
As a corollary of triangle inequality (textbook 2.2.4 Corollary),
we have ||z,| — |z|| < |z, — 2| .
Hence ||z, | — |z|| < e for all n > N.
Therefore, lim,, o |2,| = |2].

(b). Note that gy > 0 since o < & < f.
So there exists N € N such that |z, — z| < gy for all n > N.
Equivalently, —eg < x, —x < &g for all n > N.
Hence for all n > N, by the definition of g,

{ Tph—r<eg<f—=x
—(

r—a)< —gg<xp—T

This implies a < z,, < 5.

2 Alternatively, after having the result for sup, one can try the idea in the last part of
question 2 to get the result for inf.



5. A is non-empty because 0 € A. Also, A is bounded above by

7
Therefore, sup A exists. Since sup A — 1 fails to be an upper bound of
A, there exists n in A such that sup A — 1 < 7. Since n € A, we have
n € NU{0}. Therefore 7+ 1 is in NU {0} too, and it is greater than

the supremum of A, so it cannot be an element in A. As a result,

24+l <z <z+ @+ 1),

where the first inequality comes from 7 € A and the second comes from
n+1¢ A
(This also implies T = max A.)

Finally, for m := 7 + 1, the inequalities above give

r<z+ml=z+l+l<z+W+(y—z)<z+(y—z)=y.

. (3 marks) If # > 0, then —1 € A. Else if x < 0, then by the
Archimedean property, there is an N € N such that N > —zn, so
—N € A. We see that A is non-empty in both cases. Note that A is
bounded above by nx. Therefore, by the completeness property of real
number, sup A exists.

By essentially the same argument as in question 5, A has a largest
element which we denote by %. This means

R k+1
—§$< ki )
n n
which implies
r+1 ® 1 &
< =—+-—-<—-H4y—az)<z+{y—z) =y
n n n n

Note that == € Q. Done.



