TAs' solution¹ to 2050B assignment 2

1. (3 marks)

• min *A* does not exist.

If $m_0 = \min A$ exists, then by the definition of "min", we have *m*₀ $∈$ *A* and *m*₀ $≤$ *a* $∀a ∈ A$. Therefore 0 $lt m_0 ≤ a ≤ 1$ for all $a \in A$ (the first and last inequality come from the definition of A).

Note that $m_0/2 \in A$ as $0 < m_0 \leq 1$. Thus we have $0 < m_0 \leq$ $m_0/2$, which is impossible.

Hence min *A* does not exist.

• inf $A = 0$.

Let $l_0 = 0$. Noting that l_0 is a lower bound of A, it remains to show that for any $\epsilon > 0$, $l_0 + \epsilon$ is not a lower bound of A (no matter how small ϵ is). It follows by the observation that $a := \frac{\min(\epsilon, 1)}{2}$ 2 satisfies $a \in A$ and $a < l_0 + \epsilon$.

(Remark: Notice that inf *A* exists in R but does not exist in *A*.)

- max $A=1$. Simply note that $1 \in A$ and $a \leq 1$ for all $a \in A$.
- $\sup A = 1$.

It is because for any $B \subseteq \mathbb{R}$, if max *B* exists, then sup $B = \max B$. Reason: On the one hand, max *B* is an upper bound of *B*. On the other hand, given any $\epsilon > 0$, max $B - \epsilon$ fails to be an upper bound of *B*, because $b_0 := \max B$ satisfies $b_0 \in B$ and $\max B - \epsilon < b_0$.

2. • min *S* does not exist.

Suppose $\min S$ exists. By the definition of "min", $\min S$ is an element in *S*, so there exists $n_0, m_0 \in \mathbb{N}$ such that $\min S = \frac{1}{m}$ $\frac{1}{n_0} - \frac{1}{m}$ $\frac{1}{m_0}$. But then $\min S > \frac{1}{n_0+1} - \frac{1}{m}$ $\frac{1}{m_0}$. As $\frac{1}{n_0+1} - \frac{1}{m}$ $\frac{1}{m_0} \in S$, this contradicts the minimality of min *S*. Hence min *S* does not exist.

• inf $S = -1$.

Noting that *−*1 is a lower bound of *S*, it remains to show that for any $\epsilon > 0$, $-1 + \epsilon$ is not a lower bound of *S*. Recall that by the Archimedean Property, there exists $n_0 \in \mathbb{N}$ such that $0 < \frac{1}{n_0}$ $\frac{1}{n_0} < \epsilon.$

¹This solution is adapted from the work by former TAs.

 $Hence -1 + \frac{1}{n_0} < -1 + \epsilon$. Since $-1 + \frac{1}{n_0} = \frac{1}{n_0}$ $\frac{1}{n_0} - \frac{1}{1}$ $\frac{1}{1} \in S$, the result follows.

• max *S* does not exists.

One can use similar reasoning as for min.

Alternatively, for any $B \subseteq \mathbb{R}$, if we denote $\{x \in \mathbb{R} : -x \in B\}$ by *−B*, then we have: $(-1) \times \max B = \min(-B)$ (either both sides exist or do not exist), because:

$$
\begin{cases} \n\quad b_0 \in B \\
b \le b_0 \ \forall b \in B\n\end{cases} \Leftrightarrow \begin{cases} \n-b_0 \in -B \\
-b_0 \le b' \ \forall b' \in -B\n\end{cases}
$$

Observe that $S = -S$.

• $\sup S = 1$.

One can use similar reasoning as for inf.

Alternatively, observe that for any $B \subseteq \mathbb{R}$, we have $(-1) \times \sup B =$ inf(*−B*) (either both sides exist or do not exist), because:

$$
\begin{cases} u_0 \text{ is an upper bound of } B \\ u_0 - \epsilon < b \text{ for some } b \in B \end{cases} \Leftrightarrow \begin{cases} -u_0 \text{ is a lower bound of } -B \\ b' < -u_0 + \epsilon \text{ for some } b' \in -B \end{cases}
$$

3. (4 marks)

For convenience, write $f_1 = f, f_2 = g$, and $f_i(X) = \{f_i(x) : x \in X\}$. Note that for $i = 1, 2, f_i$ is bounded above, so the set $f_i(X)$ is bounded above too. By completeness, the supremum for the set $f_i(X)$, denoted by $\sup[f_i(X)]$, exists.

For each $y \in X$, since $f_i(y) \in f_i(X)$, $f_i(y)$ cannot be greater than the supremum of $f_i(X)$, so $f_i(y) \leq \sup[f_i(X)]$. Adding up, we have $f_1(y) + f_2(y) \le \sup[f_1(X)] + \sup[f_2(X)]$. This inequality holds for all *y ∈ X*.

Therefore, the set $(f_1 + f_2)(X) = \{f_1(x) + f_2(x) : x \in X\}$ is bounded above by the value $\sup[f_1(X)] + \sup[f_2(X)]$, so the supremum of this set cannot be greater than that value. This means

$$
\sup[(f_1 + f_2)(X)] \le \sup[f_1(X)] + \sup[f_2(X)].
$$

Strict inequality can happen. For example, take $X = \{-1, 1\}$, $f_1(x) :=$ $x, f_2 := -f_1$. Then $f_1(X) = f_2(X) = \{-1, 1\}$, while $(f_1 + f_2)(X) =$ *{*0*}*. So

$$
0 = \sup[(f_1 + f_2)(X)] < \sup[f_1(X)] + \sup[f_2(X)] = 1 + 1 = 2.
$$

Equality can also happen: Take $X = \{0\}$, $f_i(x) = x$. Then $f_1(X) =$ $f_2(X) = (f_1 + f_2)(X) = \{0\}$, so

$$
0 = \sup[(f_1 + f_2)(X)] = \sup[f_1(X)] + \sup[f_2(X)].
$$

We handle inf similarly². Assuming f_i is bounded below function on *X* so that inf $[f_i(X)]$ exists, we have, for any $y \in X$,

$$
\begin{cases} \inf[f_1(X)] \le f_1(y) \\ \inf[f_2(X)] \le f_2(y) \end{cases}
$$

so $\inf[f_1(X)] + \inf[f_2(X)]$ is a lower bound of $(f_1 + f_2)(X)$, and consequently

 $\inf[f_1(X)] + \inf[f_2(X)] \leq \inf[(f_1 + f_2)(X)]$.

The first example above gives strict inequality (*−*2 *<* 0), while the second example gives equality $(0 = 0)$.

- 4. (a). Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all $n > N$, $|x_n - x| < \varepsilon$. As a corollary of triangle inequality (textbook 2.2.4 Corollary), we have $||x_n| - |x|| \le |x_n - x|$. Hence $||x_n| - |x|| < \varepsilon$ for all $n > N$. Therefore, $\lim_{n\to\infty} |x_n| = |x|$.
	- (b). Note that $\varepsilon_0 > 0$ since $\alpha < x < \beta$. So there exists $N \in \mathbb{N}$ such that $|x_n - x| < \varepsilon_0$ for all $n > N$. Equivalently, $-\varepsilon_0 < x_n - x < \varepsilon_0$ for all $n > N$. Hence for all $n > N$, by the definition of ε_0 ,

$$
\begin{cases}\n x_n - x < \varepsilon_0 \le \beta - x \\
-(x - \alpha) \le -\varepsilon_0 < x_n - x\n\end{cases}
$$

.

This implies $\alpha < x_n < \beta$.

²Alternatively, after having the result for sup, one can try the idea in the last part of question 2 to get the result for inf.

5. *A* is non-empty because $0 \in A$. Also, *A* is bounded above by $\frac{x-z}{\ell}$. Therefore, sup *A* exists. Since sup $A - 1$ fails to be an upper bound of *A*, there exists \overline{n} in *A* such that sup $A - 1 < \overline{n}$. Since $\overline{n} \in A$, we have $\overline{n} \in \mathbb{N} \cup \{0\}$. Therefore $\overline{n} + 1$ is in $\mathbb{N} \cup \{0\}$ too, and it is greater than the supremum of *A*, so it cannot be an element in *A*. As a result,

$$
z + \overline{n}\ell \le x < z + (\overline{n} + 1)\ell,
$$

where the first inequality comes from $\overline{n} \in A$ and the second comes from $\overline{n} + 1 \notin A$.

(This also implies $\overline{n} = \max A$.)

Finally, for $\overline{m} := \overline{n} + 1$, the inequalities above give

$$
x < z + \overline{m}\ell = z + \overline{n}\ell + \ell < z + \overline{n}\ell + (y - x) \le x + (y - x) = y.
$$

6. (3 marks) If *x ≥* 0, then *−*1 *∈ A*. Else if *x <* 0, then by the Archimedean property, there is an $N \in \mathbb{N}$ such that $N > -xn$, so *−N ∈ A*. We see that *A* is non-empty in both cases. Note that *A* is bounded above by *nx*. Therefore, by the completeness property of real number, sup *A* exists.

By essentially the same argument as in question 5, *A* has a largest element which we denote by $\bar{\kappa}$. This means

$$
\frac{\overline{\kappa}}{n} \le x < \frac{\overline{\kappa} + 1}{n},
$$

which implies

$$
x < \frac{\overline{\kappa} + 1}{n} = \frac{\overline{\kappa}}{n} + \frac{1}{n} < \frac{\overline{\kappa}}{n} + (y - x) \le x + (y - x) = y.
$$

Note that $\frac{\overline{\kappa}+1}{n} \in \mathbb{Q}$. Done.