
TAs’ solution1 to 2050B assignment 2

1. (3 marks)

• minA does not exist.
If m0 = minA exists, then by the definition of ”min”, we have
m0 ∈ A and m0 ≤ a ∀a ∈ A. Therefore 0 < m0 ≤ a ≤ 1 for all
a ∈ A (the first and last inequality come from the definition of
A).
Note that m0/2 ∈ A as 0 < m0 ≤ 1. Thus we have 0 < m0 ≤
m0/2, which is impossible.
Hence minA does not exist.

• inf A = 0.
Let l0 = 0. Noting that l0 is a lower bound of A, it remains to
show that for any ϵ > 0 , l0+ϵ is not a lower bound of A (no matter
how small ϵ is). It follows by the observation that a := min(ϵ,1)
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satisfies a ∈ A and a < l0 + ϵ.
(Remark: Notice that inf A exists in R but does not exist in A.)

• maxA = 1.
Simply note that 1 ∈ A and a ≤ 1 for all a ∈ A.

• supA = 1.
It is because for any B ⊆ R, if maxB exists, then supB = maxB.
Reason: On the one hand, maxB is an upper bound of B. On the
other hand, given any ϵ > 0, maxB−ϵ fails to be an upper bound
of B, because b0 := maxB satisfies b0 ∈ B and maxB − ϵ < b0.

2. • minS does not exist.
Suppose minS exists. By the definition of ”min”, minS is an
element in S, so there exists n0,m0 ∈ N such that minS = 1

n0
− 1

m0
.

But then minS > 1
n0+1

− 1
m0

. As 1
n0+1

− 1
m0

∈ S, this contradicts
the minimality of minS. Hence minS does not exist.

• inf S = −1.
Noting that −1 is a lower bound of S, it remains to show that for
any ϵ > 0 , −1 + ϵ is not a lower bound of S. Recall that by the
Archimedean Property, there exists n0 ∈ N such that 0 < 1

n0
< ϵ.

1This solution is adapted from the work by former TAs.
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Hence −1 + 1
n0

< −1 + ϵ. Since −1 + 1
n0

= 1
n0

− 1
1
∈ S, the result

follows.
• maxS does not exists.

One can use similar reasoning as for min.
Alternatively, for any B ⊆ R, if we denote {x ∈ R : −x ∈ B} by
−B, then we have: (−1)×maxB = min(−B) (either both sides
exist or do not exist), because:{

b0 ∈ B
b ≤ b0 ∀b ∈ B

⇔
{

−b0 ∈ −B
−b0 ≤ b′ ∀b′ ∈ −B

Observe that S = −S.
• supS = 1.

One can use similar reasoning as for inf.
Alternatively, observe that for any B ⊆ R, we have (−1)×supB =
inf(−B) (either both sides exist or do not exist), because:{

u0 is an upper bound of B
u0 − ϵ < b for some b ∈ B

⇔
{

−u0 is a lower bound of −B
b′ < −u0 + ϵ for some b′ ∈ −B

3. (4 marks)
For convenience, write f1 = f, f2 = g, and fi(X) = {fi(x) : x ∈ X}.
Note that for i = 1, 2, fi is bounded above, so the set fi(X) is bounded
above too. By completeness, the supremum for the set fi(X), denoted
by sup[fi(X)], exists.
For each y ∈ X, since fi(y) ∈ fi(X), fi(y) cannot be greater than
the supremum of fi(X), so fi(y) ≤ sup[fi(X)]. Adding up, we have
f1(y) + f2(y) ≤ sup[f1(X)] + sup[f2(X)]. This inequality holds for all
y ∈ X.
Therefore, the set (f1 + f2)(X) = {f1(x) + f2(x) : x ∈ X} is bounded
above by the value sup[f1(X)] + sup[f2(X)], so the supremum of this
set cannot be greater than that value. This means

sup[(f1 + f2)(X)] ≤ sup[f1(X)] + sup[f2(X)].

Strict inequality can happen. For example, take X = {−1, 1}, f1(x) :=
x, f2 := −f1. Then f1(X) = f2(X) = {−1, 1}, while (f1 + f2)(X) =
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{0}. So

0 = sup[(f1 + f2)(X)] < sup[f1(X)] + sup[f2(X)] = 1 + 1 = 2.

Equality can also happen: Take X = {0}, fi(x) = x. Then f1(X) =
f2(X) = (f1 + f2)(X) = {0}, so

0 = sup[(f1 + f2)(X)] = sup[f1(X)] + sup[f2(X)].

We handle inf similarly2. Assuming fi is bounded below function on
X so that inf[fi(X)] exists, we have, for any y ∈ X,{

inf[f1(X)] ≤ f1(y)
inf[f2(X)] ≤ f2(y)

,

so inf[f1(X)] + inf[f2(X)] is a lower bound of (f1 + f2)(X), and conse-
quently

inf[f1(X)] + inf[f2(X)] ≤ inf[(f1 + f2)(X)].

The first example above gives strict inequality (−2 < 0), while the
second example gives equality (0 = 0).

4. (a). Let ε > 0. Then there exists N ∈ N such that for all n > N ,
|xn − x| < ε.
As a corollary of triangle inequality (textbook 2.2.4 Corollary),
we have ||xn| − |x|| ≤ |xn − x| .
Hence ||xn| − |x|| < ε for all n > N .
Therefore, limn→∞ |xn| = |x|.

(b). Note that ε0 > 0 since α < x < β.
So there exists N ∈ N such that |xn − x| < ε0 for all n > N .
Equivalently, −ε0 < xn − x < ε0 for all n > N .
Hence for all n > N , by the definition of ε0,{

xn − x < ε0 ≤ β − x
−(x− α) ≤ −ε0 < xn − x

.

This implies α < xn < β.
2Alternatively, after having the result for sup, one can try the idea in the last part of

question 2 to get the result for inf.
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5. A is non-empty because 0 ∈ A. Also, A is bounded above by x−z
ℓ

.
Therefore, supA exists. Since supA− 1 fails to be an upper bound of
A, there exists n in A such that supA− 1 < n. Since n ∈ A, we have
n ∈ N ∪ {0}. Therefore n + 1 is in N ∪ {0} too, and it is greater than
the supremum of A, so it cannot be an element in A. As a result,

z + nℓ ≤ x < z + (n+ 1)ℓ,

where the first inequality comes from n ∈ A and the second comes from
n+ 1 /∈ A.
(This also implies n = maxA.)
Finally, for m := n+ 1, the inequalities above give

x < z +mℓ = z + nℓ+ ℓ < z + nℓ+ (y − x) ≤ x+ (y − x) = y.

6. (3 marks) If x ≥ 0, then −1 ∈ A. Else if x < 0, then by the
Archimedean property, there is an N ∈ N such that N > −xn, so
−N ∈ A. We see that A is non-empty in both cases. Note that A is
bounded above by nx. Therefore, by the completeness property of real
number, supA exists.
By essentially the same argument as in question 5, A has a largest
element which we denote by κ. This means

κ

n
≤ x <

κ+ 1

n
,

which implies

x <
κ+ 1

n
=

κ

n
+

1

n
<

κ

n
+ (y − x) ≤ x+ (y − x) = y.

Note that κ+1
n

∈ Q. Done.
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