MATH2050B Mathematical Analysis I

Homework 4 suggested Solution*

Question 3*. Show that hm (1+ )n =0, Ve > 0.
Solution:
For n > 101, we note that
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Question 5*. Let a>0. We know that \/a exists in (0,00) (can you do this 7). Below is
a “pratical way” to show not only its existence but also a correponding approximation/numerical

procedure. Pick z; > 0 such that z? > a, and define
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(i) Show that if = := lim,, x,, exists in (0, 00), then x = — ( and so x is the (positive) Sq. root of

a). By (it) & (iii) below, the limit x does exist !
(ii) Show that 22 > a, Vn e N.
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(Hint: fo_l = % (x% + 2a + (g@i) ) > a because (a:n — w%) > 0)
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Solution:

*please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.



(i) We first show that if = := lim,, 2, exists in (0, 00), then lim,, 2= = 2. To see this, we notice

that for any € > 0, there exists IV € N such that for any n > N,
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It follows that for any n > N,
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Thus we have lim,, > = £. Since 11 = % (xn + f), let n tend to infinity, we obtain
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z + i, hence that z = g.
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(ii) Let P(n) denote the proposition that 22 > a.

that is, z =

Notice that when n = 1, we have 2% > a, thus P(1) is true.

Suppose P(n) is true, i.e. 22 > a. It follows that
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Hence P(n + 1) is true. By the principle of mathematical induction, P(n) is true for all n € N.
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Therefore, we have z2 > a for all n € N.

2
(iii) It is easily seen that z, > 0 for all n € N, since 2y > 0. It follows from (ii) that ;- < In.,
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which implies that the sequence {z,} is a decreasing sequence.
Question 6*. Suppose lim,, z,, = 6. Show in the e — N terminology (and definitions only) that
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( properties of R are allowed).
Solution:

Fix e > 0, since lim,, 2, = 6, there exists Nj(e) € N such that for any n > Nj(e),

|z, — 6] < €/200.



Besides there exists Ny € N such that for all n > N>, we have

|zn, — 6] < = ie.
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which implies that ,, —5 > 3 and |z,| < 7.

Denote N = max{N;(e), N2}, then for any n > N,

This shows that lim,,
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