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Solution 2

In this assignment, {z,} and {y,} are sequences of real numbers. E is a subset of R.

Recall that the limit superior of {z,} is defined by

lim sup x,, := inf sup xy.
" k>n

Clearly z, := supjs,, &% is monotone decreasing, and hence

lim z,, = inf z,, = lim sup x,,, (1)
n n

where the limit is taken in the extended real number. Similarly the limit inferior of {z,,} is given
by
liminf x, := inf z; = lim inf xj. 2
iminf 2y, .= sup inf z; =lim inf 2 (2)
1.* (3rd: P.39, Q12)

Show that = = lim z,, if and only if every subsequence of {x,} has in turn a subsequence
that converges to . How about x € {—00,00}7

Solution. (=) Suppose limz,, = x. Then every subsequence {x,, } of {z,} converges
to x. Therefore {zy, } has itself as a further subsequence that converges to .

(<=) Suppose on the contrary that {z,} does not converge to z. Then there exists ¢y > 0
such that for all N € N, there is n > N such that

|zn, — x| > 0.

Take N =1, then we can find n; > 1 such that |x,, — x| > €g. Take N = ny, we can find
ng > ny such that |x,, — x| > 9. Continue in this way, we can find a subsequence {z,, }
of {x,} such that

|zp, — x| > €9 for ke N.
Now {zp, } has no further subsequence that converges to x.

Similar results hold if x = —o0 or oo. |

2. (3rd: P.39, Q13)

Show that the real number [ is the limit superior of the sequence {x,} if and only if (i)
given € > 0, dn such that zx <+ ¢ for all £ > n, and (ii) given ¢ > 0 and n, Ik > n
such that zp, > | — e.

Solution. We show that (1) limsupxz, < I’ if and only if In such that z; < I’ for all
k > n; and (2) limsup z,, > 1" if and only if for all n, 3k > n such that z; > 1”.

(1): By the definition of supremum and infinmum,

limsupz,, < ' <= infsupzy <!’ < (In)(supxy <)
" k>n k>n

< (3n)(Vk >n)(z, <.
(2): By the definition of supremum and infinmum,

limsup x,, > I" <= infsupzy > 1" < (Vn)(supzy > ")
n g>n k>n

— (Vn)3k >n)(zx >1").
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3.*

5%

Remark:

(a) Similar results hold for limit inferior.
(b) (1), (2) may fail if “<” (“>” ) is replaced by “<” (“>7).

Now the desired statement follows immediately once we note that limsupx, = [ if and
only if given any € > 0, ] — e < limsupz, <l +¢.

<
(3rd: P.39, Q14)
Show that lim sup x,, = oo if and only if given A and n, 3k > n such that x; > A.
Solution. The statement follows immediately from (2) in question 2 and the fact that
x = oo if and only if z > A for any A € R. <
(3rd: P.39, Q15)

Show that liminf z,, <limsupx, and liminf x,, = limsup z,, = [ if and only if [ = lim x,,.

Solution. Clearly infy>, zp < supys, zx for all n > 1. Hence, by (1) and (2), and letting
n — 0o, we have

liminf x,, = lim inf z; < limsup z; = limsup z,,.
n k>n n k>n

Suppose liminf z,, = limsup x, = [. Then by the results in question 2, given any € > 0,
there exist ni,ny € N such that

xj >1—e¢ forall j >ng

and
rp <l +e forall k> ns.

Hence | — e < x, < 1+ ¢ for all n > max{nj,ne}. Thus we have limx,, = . The converse
can be proved by reversing the argument above.

<

(3rd: P.39, Q16)
Prove that

lim sup z,, + liminf y,, < limsup(z,, + y,) < limsup x,, + lim sup y,,
provided the right and left sides are not of the form oo — co.
Solution. For all n > 1,

T + igf y; < +yr whenever k£ > n,
Jj=zn

so that

sup xx + inf y; < Sup(iﬁk + yk)
k>n jzn k>n
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By (1) and (2), we can let n — oo on both sides and obtain
lim sup x,, + lim inf y,, < limsup(x, + yn),

provided the left side is not of the form oo — cc.

On the other hand, for all n > 1,

sup(xy, + yx) < sup xx + sup yg.
k>n k>n k>n

Again, using (1) and (2), and letting n — oo, we obtain
lim sup(z,, + yp) < limsup z,, + lim sup yy,

provided the right side is not of the form oo — co.

<
6. (3rd: P.39, Q17)
Prove that if z,, > 0 and y, > 0, then
lim sup(znyn) < (limsup 2y ) (limsup yy),
provided the product on the right is not of the form 0 - co.
Solution. For all n > 1,
0 < zyr < (supxj)(supy;) whenever k > n,
j>n 7 jzn
since T, yn > 0, so that
sup(zxyx) < (sup z ) (Sup y)-
k>n k>n k>n
Using (1) and (2), and letting n — oo, we have
lim sup(z,y,) < (limsup x,,)(lim sup yy,),
provided the right side is not of the form 0 - co. <

7. (3rd: P.46, Q27)

x € R is called a point of closure of E if each neighbourhood of x intersects E. Show
that = is a point of closure of E if and only if there is a sequence {y,} with y, € E and
z =limy,.

Solution. Suppose z is a point of closure of E. Then the open ball B(z,1/n), which is
centred at x and of radius 1/n, intersects E for all n > 1. Pick y, € EN B(x,1/n) for
each n. Then {y,} is a sequence in E such that limy,, = x, since |y, — x| < 1/n for all n.

On the other hand, suppose {y,} is a sequence in E such that z = limy,. Let U be a
neighbourhood of x. Then y, — x implies that y, € U for all sufficiently large n. In
particular, U N E # (). |

8. (3rd: P.46, Q28; 4th: P.20, Q30(i))

A number z is called an accumulation point of a set E if it is a point of closure of E\ {x}.
Show that the set E’ of accumulation points of E is a closed set.
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10.

Solution. We would like to show that the complement of E’ is open. Let « € (E’)¢. Then
x is not a point of closure of E'\ {x}. Hence, by definition, there is an open neighbourhood
U of z such that UN (E \ {z}) = 0. We claim that every y € U is not an accumulation
point of E, so that x € U C (E’)¢, and hence (E')¢ is open.

Let y € U \ {z}. Since U \ {z} is open, there is a neighbourhood V of y such that
V C U\ {z}. Hence

V(EN{y}) S U\{z})nE=0.
Thus y is not a point of closure of E \ {y}, that is, y is not an accumulation point of E.

<

(3rd: P.46, Q29; 4th: P.20, Q30(ii))
Show that E = EU FE'.

Solution. Recall that E is the set of all point of closure of E. From the definitions, it is
clear that EU E' C E. On the other hand, if x € F' \ E, then for every neighbourhood U
of z,

UN(E\{z})=UNE # .
Hence = € E'. Therefore E C EU E'. <

(3rd: P.46, Q30; 4th: P.20, Q31)

A set E is called isolated if E N E' = (). Show that every isolated set of real numbers is
countable.

Solution. Suppose E is isolated. Then no point in F is an accumulation point of F, that
is, for all z € E, there is 7 > 0 such that B(z,r) N (E \ {z}) = 0. Hence

E= U{x € EN|[—k,k]: B(z,1/n)N(E\{z}) =0} = UEnk

n,k n,k

We will show that F), 1 is a finite set for each n,k > 1. Then E is countable since it is a
countable union of finite sets.

From the definition of E,, x, it is clear that
B(z,1/2n) C [k -1,k +1] forallz e E, 4,
and
B(z,1/2n) N B(y,1/2n) =0 for all z,y € E, i, v # y,

for otherwise, x € B(y,1/n) N E, ; € B(y,1/n) N E \ {y}. Hence E, j is finite, otherwise
User, , B(z,1/2n) is unbounded.

<



