MATH2050B 2021 HW 5
TA’s solutionsﬂ to selected problems

Q1. Let > 7, ay be a positive series and ) 7 | 2"agn» be its condensed one and let

n
Sn ::Zai, Yn=12,...
=1

n
ty = Z2ia2i, Yn=1,2,...
i=1

Suppose (an) decreases to 0. Show that Y >, a, < +oo iff > 77, 2"agn < +oo (known as
Cauchy Condensation test) along the following steps: show that for all n > 2:

(i) son—1 < a1 +tp1

(i) son > a1 + &

Solution. To show (i), observe that: ag + a3z < 2a2, a4 + a5 + .. + a7 < 4ay, etc. Formally, for
every 1 = 1,2, ... 4
Agi + Goiyq + -+ Qi 2i 1) < 2'aqi

Therefore

2n—1 n—12t—1

Son_1 = E a; = a1 + E E A9iy
=1 i=1 k=0
n—1

<a+ Z 2'ay = ay +tp1
i=1

For (ii), observe that: 2a4 < ag+ay, 4ag < as+ag+---+ag, etc. Formally, for every i = 1,2,...
2ia2¢+1 S CL2i+1 —+ CL27,'+2 + cee 4 a2i+2i

Therefore

t Ly
ai + En =a + Z 2171(121'
i=1
n—1
<ai+az+ Z 2" agit1
i=1
n—1 2
<ai+az+ ZZ%“F’C
i=1 k=1
2n
<a;+az+ Z a;
i=3

Finally let us prove that (¢,) converges iff (s,) converges. Because both (¢,) and (s,) are
increasing sequence, so to show convergence it suffices to show boundedness.

Iplease kindly send an email to nclliu@math.cuhk.edu.hk if you have spotted any typo/error/mistake.
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Assume (s, ) converges, then (s,) is bounded by some M, then using (ii), we have t,, < 2M —2a,
for all n. Hence (t,) converges. Conversely assume (t,) converges, note that s, < son for all n,
S0 Sy, < son < aj + ty—1, which shows (s,) is bounded.

Q2. For any bounded sequence (zy,):

limsup s, :=lims,, = maxL = inf £
n n

where

o s, :=sup{x, :n <m}
e L ={¢cR:3Jsome subseq of (z,) convergent to ¢}
e F={uecR:3IN eNst. z, <uVn>N}

Is it true that limsupx,, € E?

Solution. Not true. Consider the sequence (z,) defined by z,, = 1. Then (x,) is convergent

n
to 0, limsup x,, = 0. In this case £ = (0, 00)

Q3. Recall that for zg € R and § > 0, Vs(zg) := {x € R : |x — 29| < 0}. Check all equalities
below: (Remark: there was a typo in the definition of A°, corrected in here)

A :={ceR: Vs(c) intersects A\ {c} Vé > 0}
={ceR:V6>0Jdaec As.t. 0<|a—c|<d}... (call thisset A;)

={ceR:VneN3da, € A\ {c} s.t. |ap, —¢| < %} (A2)
={ceR:Jaseq (a,) in A\ {c} s.t. lirrlnan =c}... (43)
={ceR:dist(c, A\ {c}) =0}... (Ay)

where dist(z, B) = inf{|z — b| : b € B} for all nonempty B C R.

Solution. We prove that A° C A C Ay C A3 C Ay C A“.

(A€ C Ay) Let ¢ € A% Let 6 > 0. Then Vs(c) N A\ {c} is nonempty, pick a point a in this
intersection, then a € A, a # ¢, and s0 0 < |a — ¢| < J. c € A;

(A; C Ag) Let ¢ € Ay. Let n € N. For § = 1, there exists a € A such that 0 < |a —¢| < 1. It

n
follows that a # ¢ or otherwise 0 = |a — ¢|. ¢ € A

(Ag C A3) Let ¢ € As. For every n € N, there exists a, € A\ {c} such that |a,, — | < 1. Then
the sequence (ay,) converges to c. ¢ € As.

(As C Ay) Let ¢ € As. Note that the dist function is non-negative, i.e. dist(z, B) > 0. Let (a,)
be a sequence in A\ {¢} convergent to c¢. Then for all n:

0 <dist(c, A\ {c}) < |c— ay|
Taking n — oo we see that dist(c, A\ {c}) =0. = € A3

(Ag C A°) Let ¢ € Ay. Let 6 > 0. Note dist(c, A\ {¢}) < 9, by definition of infimum there
exists a € A\ {c} such that |a — c| < ¢, i.e. Vs(c)NA\{c} #@. ce A"

Q4. Let A :=(1,v/2) N Q. Identify A® with each of the following methods:



(a) Check via definition given in Q3.

(b) Let f.(z) = dist(x, A\ {c}) for all z € R. Determine f. and hence identify A°.

Solution. We check that A¢ = [1,+/2] in each of (a), (b):

(a): (A C [1,4/2]). Let ¢ € A°, suppose on the contrary that ¢ € (—o0o, 1) or ¢ € (v/2,00). For
the first case, there exists a § > 0 such that Vs(c) C (—oo, 1). For the second case, there exists
a & > 0 such that Vs(c) C (v/2,00). In both cases, there exists § > 0 with Vs(c) N A\ {c} = 2.

([1,v2] € A°). Let ¢ € [1,v/2]. Let § > 0. Because Q is dense in R, so Vz(c) N A\ {c} # @.
Hence ¢ € A°.

(b): fe(z) =0if z € [1,V2], fe(z) =1 -2 if x < 1 and f.(z) = 2 — V2 if 2 > /2. Hence
fo(c) =0iff c € [1,v/2]. In Q3 we proved A° = A;. Hence A° = [1,/2].

Q5. Let g € A, f: A — R and ¢1,02 € R. Suppose f(z) = ¢; (i=1,2) as x — xy (z € A).
Show that #1 = £5.

Solution. Let € > 0, then there exists § > 0 such that for all z € A with 0 < |z — o] < 4,
|f(x) — 4| <€/2. Then [y — b < |f(z) —{1] + |f(x) — l2| < €. Hence £; = ls.



