
MATH2050B 2021 Assignment 2
TA’s solutions1 to selected problems

Q1. Using the axiom of R, do:

(i) If A is a subset of R, bounded below but not above, and satisfies the property: x ∈ A
whenever there exists a1, a2 ∈ A such that a1 < x < a2. Show that A is an interval

(ii) State and prove the nested interval theorem.

Solution. (i): Let a = inf(A) ∈ R. We prove that A = (a,∞) or A = [a,∞):

Case 1. Suppose a ∈ A. Let x ∈ A, then x ≥ a, thus A ⊂ [a,∞). Conversely let x ∈ [a,∞). if
x = a then certainly x ∈ A. If x 6= a, because A is not bounded above we can find a2 ∈ A such
that x < y. Now we have a < x < a2, so by the assumption on A, x ∈ A. Hence A = [a,∞).

Case 2. Suppose a /∈ A. Let x ∈ A, then x > a, thus A ⊂ (a,∞). Conversely let x ∈ (a,∞).
Because x > a, by definition of infimum, there exists a1 ∈ A such that a < a1 < x. On the
other hand, A is not bounded above means that there exists a2 ∈ A such that x < a2. Now
a1 < x < a2 where a1, a2 ∈ A. By the assumption on A, x ∈ A. Hence A = (a,∞).

(ii): (Nested interval theorem) Let In = [an, bn] be a sequence of intervals so that Ik+1 ⊂ Ik for
all k = 1, 2, . . . , then ∩∞k=1Ik 6= ∅.

Proof. By the nested property, [an, bn] = In ⊂ I1 for all n = 1, 2, . . . , so an ≤ b1 for all n.
This shows that the set {an : n = 1, 2 . . . } is bounded above, let a = sup(A). We claim that
a ∈ ∩∞k=1Ik. To do this we need to show an ≤ a ≤ bn for all n. an ≤ a for all n is clear, it
remains to show a ≤ bn for all n. Suppose on the contrary that a > bk for some k. Then for all
n ≥ k, an ≤ bk < a. By the nested property, an is an increasing sequence, so we have in fact
an ≤ bk < a for all n = 1, 2, . . . , this gives a ≤ bk < a which is a contradiction.

Q2. For each of the following, compute the limit if exists in R∗ or show that the limit does not
exist. Check each of your answers by definition.

(i) limx→7
x
x−7 , x < 7

(ii) limx→1
x2

x2−2 , x 6=
√

2

(iii) limx→
√
2

x2

x2−2 , x 6=
√

2

(iv) limx→0

√
1+2x−

√
1+3x

x+2x2
, x > 0

Solution. (i): The limit is −∞. Let M < 0. For x < 7 with 0 < 7 − x < δ where
δ := min(6,− 1

M ), we have x > 1 and 7− x < − 1
M . It follows that x

x−7 < −
1
δ ≤M .

(ii): The limit is −1. Note | x2
x2−2 + 1| = 2x

2−1
x2−2 . First observe that if 0 < |x − 1| < 1

10 , then
9
10 < x < 11

10 and so

−100

119
>

1

x2 − 2
> −100

79

1please send an email to nclliu@math.cuhk.edu.hk if you have spotted any typo/error/mistake.
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Let ε > 0, because limx→1 x
2 = 1 (see proof below), there exists δ0 so that for all x with

0 < |x− 1| < δ0, |x2 − 1| < ε. Take δ = min(δ0,
1
10), then for x with 0 < |x− 1| < δ, we have

| x2

x2 − 2
+ 1| = 2|x

2 − 1

x2 − 2
| < 200

79
ε

Proof of (limx→1 x
2 = 1). Let ε > 0. Note that if 0 < |x − 1| < 1

2 , then 3
2 < x + 1. Take

δ = min(ε, 12), then for all x with 0 < |x− 1| < δ, we have |x2 − 1| = |x− 1| |x+ 1| < 3
2ε.

(iii). The limit does not exist. Suppose on the contrary that the limit exists and equal to

` ∈ [−∞,∞]. Then limx→
√
2+

x2

x2−2 = ` = limx→
√
2−

x2

x2−2 too.

Claim. limx→
√
2+

x2

x2−2 = +∞. Let M > 0. Take δ = min( 1
M ,

1
10), then for x with 0 < x−

√
2 <

δ, we have 1
x+
√
2
> ( 1

10 + 2
√

2)−1 and 1
x−
√
2
> 1

δ = M , so

x2

x2 − 2
≥ 2

x2 − 2
≥M(

1

10
+ 2
√

2)−1

Because ( 1
10 + 2

√
2)−1 is a constant, it follows that limx→

√
2+

x2

x2−2 = +∞.

Now, by our assumption that limx→
√
2−

x2

x2−2 = ` = +∞, we can conclude a contradiction. This

is because the function x 7→ x2

x2−2 takes values in (−∞, 0) for x <
√

2. It is impossible that

limx→
√
2−

x2

x2−2 ∈ (0,∞].

(iv): The limit is −1
2 . We first split the problem to several easier subproblems. Note

√
1 + 2x−

√
1 + 3x

x+ 2x2
+

1

2
=

√
1 + 2x+

√
1 + 3x− 2

(1 + 2x)(
√

1 + 2x+
√

1 + 3x)
+

2x

1 + 2x

The problem is solved if we can show:

(A) limx→0+

√
1+2x−1

(1+2x)(
√
1+2x+

√
1+3x)

= 0

(B) limx→0+

√
1+3x−1

(1+2x)(
√
1+2x+

√
1+3x)

= 0

(C) limx→0+
2x

1+2x = 0

(A): Let ε > 0. Take δ = ε. Note that 0 <
√

1 + 2x− 1 ≤ 2x for x > 0. It follows that

0 ≤
√

1 + 2x− 1

(1 + 2x)(
√

1 + 2x+
√

1 + 3x)
≤ 2x

2
< ε

for x with 0 < x < δ.

(B): is the same with (A). Observe that 0 <
√

1 + 3x− 1 ≤ 3x for x > 0.

(C): Let ε > 0. Take δ = ε. Then for x with 0 < x < δ, we have 0 ≤ 2x
1+2x ≤

2x
2 < ε.

Q3. Let N ≥ 2 be a natural number and let f : R→ R be defined by f(x) = xN for all x ∈ R.
Show by definition that f is continuous but not uniformly continuous.

2



Solution. (f is continuous): Pick any x0 ∈ R. We show that f is continuous at x0. Note on
[x0 − 1, x0 + 1], |x| is bounded by some M . Let ε > 0. Take δ = min(ε, 1), then for x with
|x− x0| < δ, we have x ∈ [x0 − 1, x0 + 1], so |x| ≤M , so by the assumption N ≥ 2:

|xN − xN0 | = |x− x0| |xN−1 + xN−2x0 + · · ·+ xN−10 |

By triangle inequality:

|xN − xN0 | ≤ |x− x0|(NMN−1) ≤ ε(NMN−1)

Hence f is continuous on R.

(f is not uniformly continuous on R): Suppose on the contrary that f is uniform continuous
on R. Let ε = 1. Then there exists δ > 0 such that for all x, y ∈ R with |x − y| < δ, we have
|xN − yN | < 1.

For n ∈ N, put xn = n+ δ/2, yn = n. It is clear that |xn − yn| < δ for all n, we will prove that
there exists n such that |xNn − yNn | > 1 which will be a contradiction.

By binomial theorem, xNn ≥ nN + nN−1 δ2 , so xNn − yNn ≥ nN−1 δ2 . The RHS →∞ as n→∞, so
there exists n such that |xNn − yNn | = xNn − yNn > 1.

Q4. Let ∅ 6= A ⊂ R and f, g : A → R. By virtue of definition, prove or disprove for each of
the following assertions

(i) If f, g are continuous then so is fg.

(ii) If f, g are uniformly continuous then so is fg.

Answer the same question again if A = (0, 1).

Solution. (i) The assertion is true. For ε0 := 1, there exists δ′ > 0 such that for x with
|x − x0| < δ′, we have |f(x) − f(x0)| < 1, so f(x0) − 1 < f(x) < f(x0) + 1. Therefore f(x) is
bounded by some M > 0 on Vδ′′(x0).

Pick any x0 ∈ A. Let ε > 0. Then there exists δ′′ > 0 such that for x with |x − x0| < δ′′, we
have |f(x)− f(x0)| < ε/2M and |g(x)− g(x0)| < ε/2.

Take δ = min(δ′, δ′′). For x ∈ A with |x− x0| < δ, we have

|f(x)g(x)− f(x0)g(x0)| ≤ |f(x)| |g(x)− g(x0)|+ |g(x0)| |f(x)− f(x0)| < ε

(ii). The assertion is not true. Take A = R, f(x) = g(x) = x. Then Q3 showed that fg is not
uniformly continuous continuous on R. But it is clear that f, g are uniformly continuous on R.

If A = (0, 1), then (i) is still true. We will prove that in this case (ii) is also true.

Consider ε0 := 1. There exists δ > 0 such that for x, y ∈ A with |x − y| < δ, we have
|f(x)− f(y)| < 1 and |g(x)− g(y)| < 1.

Because A is bounded, there are finitely many x1, . . . , xN ∈ A such that

N⋃
i=1

Vδ(xi) =

N⋃
i=1

(xi − δ, xi + δ) ⊃ (0, 1)
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On each Vδ(xi), f, g are bounded by some Mi > 0, i.e. |f(x)| < Mi and |g(x)| < Mi for all
x ∈ Vδ(xi). (Take Mi = |f(xi)|+ 1, then for all x ∈ Vδ(xi), |f(x)|− |f(xi)| ≤ |f(x)−f(xi)| < 1)
Let M = max(Mi), we have f, g are bounded by M on A.

Let ε > 0. By uniform continuity of f, g, there exists δ′ > 0 such that for all x, y ∈ A with
|x− y| < δ′, |f(x)− f(y)| < ε/2M and |g(x)− g(y)| < ε/2M .

For x, y ∈ A with |x− y| < δ′, we have

|f(x)g(x)− f(y)g(y)| ≤ |f(x)| |g(x)− g(y)|+ |g(y)| |f(x)− f(y)| < ε

Hence fg are uniformly continuous on A.

4


