MATH2050B 2021 Assignment 2
TA’s solutionsﬂ to selected problems

Q1. Using the axiom of R, do:

(i) If A is a subset of R, bounded below but not above, and satisfies the property: x € A
whenever there exists a1,as € A such that a; < x < as. Show that A is an interval

(ii) State and prove the nested interval theorem.

Solution. (i): Let a = inf(A) € R. We prove that A = (a,0) or A = [a, c0):

Case 1. Suppose a € A. Let x € A, then x > a, thus A C [a,00). Conversely let = € [a,0). if
x = a then certainly x € A. If £ # a, because A is not bounded above we can find as € A such
that < y. Now we have a < x < ag, so by the assumption on A, x € A. Hence A = [a,o0).

Case 2. Suppose a ¢ A. Let € A, then z > a, thus A C (a,00). Conversely let x € (a,00).
Because z > a, by definition of infimum, there exists a; € A such that a < a; < x. On the
other hand, A is not bounded above means that there exists as € A such that x < as. Now
a1 < z < ag where aj,as € A. By the assumption on A, x € A. Hence A = (a, o0).

(ii): (Nested interval theorem) Let I,, = [ay, b,] be a sequence of intervals so that I C Iy for
all k =1,2,..., then NZ2 I}, # @.

Proof. By the nested property, [an,b,] = I, C I for all n = 1,2,..., so a, < by for all n.
This shows that the set {a, : n = 1,2...} is bounded above, let a = sup(A). We claim that
a € NP2 1. To do this we need to show a, < a < b, for all n. a, < a for all n is clear, it
remains to show a < b, for all n. Suppose on the contrary that a > by for some k. Then for all
n >k, a, < by < a. By the nested property, a, is an increasing sequence, so we have in fact
an <bp <aforalln =12 ..., this gives a < by < a which is a contradiction.

Q2. For each of the following, compute the limit if exists in R* or show that the limit does not
exist. Check each of your answers by definition.

(i) Timy 1 5, @ # V2
(iii) lim, , 5 -85, = # V2

N 1 Vit2z—/113
(iv) limgz— %, x>0

Solution. (i): The limit is —oo. Let M < 0. For z < 7 with 0 < 7 — 2 < § where
0= min(ﬁ,—ﬁ), wehavez >1land 7 —z < —ﬁ. It follows that _*= < —% < M.

(ii): The limit is —1. Note \xg—; +1] = 2;2:;. First observe that if 0 < [z — 1| < 5, then
1% <z < % and so
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Let € > 0, because lim, ;22 = 1 (see proof below), there exists dy so that for all x with
0 < |z — 1] < do, |2* — 1| < e. Take § = min(do, ;5), then for z with 0 < |z — 1| < §, we have

x2 x?—1 200

1 =2 =
g =gl < g

Proof of (limm_ﬂx =1). Let € > 0. Note that if 0 < |z — 1| < 3, then 3 < 2+ 1. Take

§ = min(e, ), then for all z with 0 < [z — 1| <, we have |22 — 1| = |z — 1| |z + 1| < 3.

(iii). The limit does not exist. Suppose on the contrary that the limit exists and equal to
¢ € [—00, 0] Thenhmxﬁer——E—hmxﬁf 2= —3— too.

Claim. limm_)\f+ x§22 = . Let M > 0. Take § = min(4;, 15), then for z with 0 < 2—v/2 <

J, we have +\[ (10+2f) andx%ﬁ>%:M,so

T 2
> 2
2 -2 " x —2_ ( + f)

Because (% +24/2)7 ! is a constant, it follows that lim,_, 5. mg—; = +o0.
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is because the function x % takes values in (—o0,0) for z < v/2. It is impossible that

. 2
lim, , 5 - € (0,00].

Now, by our assumption that lim__, = { = +00, we can conclude a contradiction. This

(iv): The limit is —%. We first split the problem to several easier subproblems. Note

VI+2e—143z 1 V14224 V1+3c—2 2x

T + 222 2 (1+22)(V1+2z+V1+3z) 1+22

The problem is solved if we can show:

Y4 1+2x—1 _ 0
1+22)(vV1+2z+v/1+3z)

. V1+3z—1 _
(B) hmz—>0+ (1+2z)(vV1+2x+/1+3z) 0

(A) hmx—>0+ (

(C) limy o4 1252 =0

(A): Let € > 0. Take 6 = e. Note that 0 < /1 + 2z —1 < 2z for x > 0. It follows that

v14+2x -1 2z
< < 5 <e
(1+22)(vV1+2z++V1+43z) = 2

for x with 0 < z < 4.

(B): is the same with (A). Observe that 0 < /1 + 3z — 1 < 3z for z > 0.

<2£E<€

(C): Let € > 0. Take § = €. Then for x with 0 < z < 0, Wehave0<1+2x_

Q3. Let N > 2 be a natural number and let f : R — R be defined by f(x) = 2V for all x € R.
Show by definition that f is continuous but not uniformly continuous.



Solution. (f is continuous): Pick any xg € R. We show that f is continuous at zy. Note on
[0 — 1,20 + 1], |z| is bounded by some M. Let ¢ > 0. Take § = min(e, 1), then for = with
|z — xo| < d, we have x € [zg — 1,20 + 1], so |z] < M, so by the assumption N > 2:

2 — | = |z — ol [V + 2V 2 4 42
By triangle inequality:
2 — | < |z — 2ol (VMY ) < (NN
Hence f is continuous on R.

(f is not uniformly continuous on R): Suppose on the contrary that f is uniform continuous
on R. Let e = 1. Then there exists 6 > 0 such that for all z,y € R with |z — y| < §, we have
|2V —yN| < 1.

For n € N, put z, = n+0/2, y, = n. It is clear that |x,, — y,| < J for all n, we will prove that
there exists n such that |22 — y&¥| > 1 which will be a contradiction.

By binomial theorem, z > nV + nN_I%, soxl —ylN > nN_lg. The RHS — oo as n — o0, so

there exists n such that |22y — V| = 22 — ¢V > 1.

Q4. Let @ # ACRand f,g: A — R. By virtue of definition, prove or disprove for each of
the following assertions

(i) If f, g are continuous then so is fg.

(ii) If f, g are uniformly continuous then so is fg.

Answer the same question again if A = (0, 1).

Solution. (i) The assertion is true. For ¢ := 1, there exists ' > 0 such that for = with
|z — o] < ¢, we have |f(x) — f(xo)] < 1, s0 f(zo) — 1 < f(z) < f(xo) + 1. Therefore f(z) is
bounded by some M > 0 on Vg (xp).

Pick any zp € A. Let € > 0. Then there exists §” > 0 such that for z with |z — zo| < §”, we
have |f(z) — f(z0)| < €/2M and |g(z) — g(z0)| < €/2.

Take § = min(d’,”). For x € A with |x — x| < §, we have

[f(@)g(x) = f(zo)g(zo)| < |f(@)|g(x) — g(zo)| + lg(zo)|[f(x) — f(z0)| <€

(ii). The assertion is not true. Take A =R, f(z) = g(x) = x. Then Q3 showed that fg is not
uniformly continuous continuous on R. But it is clear that f, g are uniformly continuous on R.

If A=(0,1), then (i) is still true. We will prove that in this case (ii) is also true.

Consider ¢y := 1. There exists 6 > 0 such that for z,y € A with |z — y| < 4, we have
|f(z) = f(y)] <1 and [g(z) —g(y)| < 1.

Because A is bounded, there are finitely many z1,...,xy € A such that
N N
U Vs(zi) = @i — 6,25+ 6) 5 (0,1)
i=1 i=1



On each Vj(z;), f,g are bounded by some M; > 0, i.e. |f(z)| < M; and |g(x)| < M; for all
z € Vs(x;). (Take M; = [f(xs)|+1, then for all x € Vs(z:), | f(x)| —[f(zs)| < |f(z) = fzi)] <1)
Let M = max(M;), we have f, g are bounded by M on A.

Let € > 0. By uniform continuity of f,g, there exists & > 0 such that for all z,y € A with
[z —y[ <& [f(z) = f(y)| < €e/2M and |g(x) — g(y)| < €/2M.

For z,y € A with |x — y| < ¢’, we have

|f(x)g(x) — fW)gW)] < |f(@)||g(z) —gW)| + g f(z) — f(y)] <e

Hence fg are uniformly continuous on A.



