eg
$$f(x) = \operatorname{Ain} x$$

 $L(x) = 0$ (zero function)
Clearly L crosses f
(at $0, \pm \pi, \pm 2\pi, \cdots$)
(At $x_0=0$, the $\delta > 0$ can be chosen as T)

If
$$L_1(x) = 1$$
, L_1 doesn't cross $f:$
at every intersection $(2n+1)\frac{\pi}{2}$, $f(x) < L_1(x) \equiv 1$ for all
 $x \in ((2n+1)\frac{\pi}{2} - \delta, (2n+1)\frac{\pi}{2} + \delta) > 1$ (enti) $\frac{\pi}{2}$, $\forall 0 < \delta < 2\pi$
eg: $f(x) = \begin{cases} |x|^{\frac{1}{2}} \operatorname{aut} \frac{1}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$
Then no "line" L crosses
 $f = dt = x_0 = 0$
All "line" L passing three (0,0) intersects $y = \pm |x|^{\frac{1}{2}}$.
Then infinite oscillation of $f \Rightarrow$ neither (1) nor(if)
in the defaution lods.

Def: A function
$$f: [a, b] \rightarrow \mathbb{R}$$
 is said to be "crosses no lines"
if there is no $L(x) = \alpha x + \beta$ crosses f .

Then the set $Z_1 = 1 \int \mathcal{E} C[a,b] : \int \mathcal{E} C[a,b] : f crosses no lines S is a residual set in C[a,b], and have dense.$

Pf: Note that C[a,b]\Z={fEC[a,b]: I some L crosses f (at some pt.)} where L(x) = dx+p (d, pEIR) And we need to show that C[a,b]\Z is of 1st category.

Notation: For
$$f \in C[a,b]$$
 and $\alpha \in \mathbb{R}$, we denote

$$f_{-\alpha}(x) = f(x) - dx$$
(subtracting the linear part of L from f)

Let An be the set of
$$f \in C[a,b]$$
 for which
 $\exists d \in En, n]$ and $x \in [a,b]$ such that
 $\begin{cases} f_{-\alpha}(t) \leq f_{-\alpha}(x) & \forall t \in (x, -\frac{1}{n}, x) \\ f_{-\alpha}(t) \geq f_{-\alpha}(x) & \forall t \in (x, x+\frac{1}{n}) \end{cases}$
($t \in [a,b]$)

Note that t is now the independent variable, and $f_{-d}(t) \leq f_{-d}(x) \quad \dot{o} \quad exactly$ $f(t) \leq \alpha t + (f(x) - \alpha x) = Lt , \quad \forall t \in (x - t_i, x)$ Similarly, $f_{-d}(t) \geq f_{-d}(x)$ is exactly $f(t) \geq \alpha t + (f(x) - \alpha x) = Lt , \quad \forall t \in (x, x + t_i)$ $\therefore \quad f \in A_n \implies f \quad crosses \quad L \quad at \quad x$ $(wth \quad \delta \leq t_i \quad and \quad slope \quad |\alpha| \leq n)$ And if f crosses some L at some X, then $f \in A_n$ or $-f \in A_n$ for some n $\Rightarrow \quad f \in A = \bigcup_{n=1}^{\infty} A_n$ or $-f \in A = \bigcup_{n=1}^{\infty} A_n$ (to be can't)