Qg
$$
f(x) = a\tilde{u}x
$$

\n $L(x) = 0$ (gro function)
\nClearly L crosses f
\n $(at 0, \pm \pi, \pm 2\pi, \cdots)$
\n $(\pi x, \pi) = 0$
\n $(\pi x, \pi) = 0$
\n $(\pi x, \pi) = 0$

If
$$
L_1(x) = 1
$$
, L_1 $dx = n't$ cross f :

\nat every *inter* $(2n+1)\frac{\pi}{2}$, $f(x) < L_1(x) \equiv 1$ f and

\n $X \in ((2n+1)\frac{\pi}{2} - \delta) (2n+1) \frac{\pi}{2} + \delta > \sqrt{en+1} \frac{\pi}{2} \xi$, $H_0 < \delta < 2\pi$

\nor

\nthen W_0 "line" L crosses

\nThen W_0 "line" L crosses

\nThen $\frac{1}{2}x^2 - 1$

\nThen $\frac{1}{2}x^2 + 1$

\nthen $\frac{1}{2}$

Def : A function
$$
f: [a,b] \rightarrow \mathbb{R}
$$
 is said to be "consses no lines"
if there is no L(x) = $\alpha x + \beta$ crosses f.

Thm The set $Z = 1f \in C[a,b]$: f crosses no lines S is a residual set in C[a, b], and hence dense. Pf: Note that $C[a,b]\setminus Z = \{\in C[a,b]: \exists \text{some } L \text{ crosses } f \text{ (at same } pt.) \}$ w_{here} $L(x) = \alpha x + \beta$ $(\alpha, \beta \in \mathbb{R})$ And we need to show that $C[a,b] \setminus Z$ is of 1st category.

Notation :
$$
F\alpha
$$
 $f \in C[a,b]$ and $\alpha \in \mathbb{R}$, we denote
\n
$$
\frac{f}{d\alpha}(x) = f(x) - d \times
$$
\n(subtracting the linear part of L from f)

Let An be the set of
$$
f \in C[a,b]
$$
 for which
\n $\exists \alpha \in [-n, n]$ and $x \in [a,b]$ such that
\n $\left\{\begin{array}{ll}\n f_{-\alpha}(t) & \leq f_{-\alpha}(x) & \forall t \in (x - \frac{1}{n}, x) \\
f_{-\alpha}(t) & \geq f_{-\alpha}(x) & \forall t \in (x, x + \frac{1}{n})\n\end{array}\right.\n\left(\begin{array}{ll}\n f \in [a, b]\n \end{array}\right)$

Clearly
$$
A_n \subset A_{n+1}
$$
, $\forall n$ $(s\tilde{u}u(x-\tilde{n}\tilde{t}),x+\tilde{v}\tilde{t}) \subset (x-\tilde{u},x+\tilde{h})$)

Note that t is now the independent variable, and $f_{-d}(t) \le f_{-d}(x)$ is exactly $f(t) \leq x + (f(x) - \alpha x) = Lt$, $\forall t \in (x - \frac{1}{2}, x)$ $S_{uluclar}(\alpha_{1})$ fix $s = f_{ul}(x)$ is exactles $f(x) \geq \alpha + f(f(x) - \alpha x) = L$ \downarrow $\forall x \in (x, x + \alpha)$ $f f f A_n \Rightarrow f$ crosses L at x $(w^{\prime}th \ \delta < \frac{1}{n}$ and slope $|\alpha| < n$)

And if I crosses some L at some x, then feAn or -feAn fasmen $\Rightarrow 5cA=\bigcup_{n=1}^{\infty}A_{n}$ $n-5cA=\bigcup_{n=1}^{\infty}A_{n}$ (to be con't)