Note: This implies
$$
xy \times \text{complete}
$$
 residue set is dense
(\overline{C} empty interior $\Rightarrow \times \overline{C}$ dense)

Recall that
$$
E
$$
 is closed nowhere duec set
\n $\Leftrightarrow \mathbb{X}\setminus E (= \mathbb{X}\setminus \overline{E})$ is an open due set.
\nHeuc ThM4.9 can be replaced as

Thun4.9' (Baire Category Theorem) In a c<u>omplete</u> metric space, c<u>ountable intersection</u> of <u>open</u> dense sets is dense

i.e. If
$$
(X,d)
$$
 is cuplet and $G_n \subset \overline{X}$ is a sequence of
open duxe sets in X , then $\bigcap_{n=1}^{\infty} G_n$ is done.
 $(Pf : Ex)$

Cor4.10: let
$$
(X, d)
$$
 be complete. Suppose that $X = \bigcup_{n=1}^{\infty} E_n$
with E_n are closed subsets. Then at least one of
these En's has non-empty interior.

$$
Pf: Suppose not, then all En has empty interior.\n
$$
\Rightarrow En \Rightarrow nowhere degree, then
$$
\n
$$
Hence \mathbb{X} = \bigcup_{n=1}^{\infty} E_n \Rightarrow of 1^{st} category.
$$
\n
$$
Boire (ategory Thm \Rightarrow \mathbb{X} has empty interior which)
$$
\n
$$
for a contradiction sine \mathbb{X}^{\circ} = \mathbb{X} . \times
$$
$$

Remark: This corollary umplies that it is impossible to decompose ^a complete metric space into ^a countable union of nowhere dense sets $(i.e.$ complete nestric space itself is of z^{nd} category.)

Cor4.11 ^A set of 1st category in ^a completemetricspace cannot be ^a residual set and vice versa

(
$$
\Rightarrow
$$
 residual sets of a complete neutric space \circ of z^{nd} ategory)

If: Let E be a set of
$$
1^{st}
$$
 (alegory)

\nthen $E = \bigcup_{n=1}^{\infty} E_n$ which E_n nowhere due to

\nIf E is also a residual set, then $X \setminus E$ is

\nalso of 1^{st} category, the

\n $X \setminus E = \bigcup_{n=1}^{\infty} E_n$ with E_n nowhere dense.

\n $\Rightarrow X = E \cup (X \setminus E) = \bigcup_{n=1}^{\infty} E_n \cup \bigcup_{n=1}^{\infty} E_n$

Taking closure of $E_n * E_n$, $\subseteq C(\bigcup_{k=1}^{\infty} \overline{E_n}) \cup (\bigcup_{k=1}^{\infty} \overline{E_n})$ (\times)

$$
\Rightarrow \qquad \mathbb{X} = (\bigcup_{n=1}^{\infty} \overline{\mathbb{E}}_{n}) \cup (\bigcup_{n=1}^{\infty} \overline{\mathbb{E}_{n}})
$$

i.e. Z à a countable union of close subsets with
empty actions. This antradiots (or 4.10.
The other way is similar.
$$
\frac{1}{X}
$$

 $eg: R$ is amplete, Q of 1st category $\Rightarrow \mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ is of z^{nd} ategory.

Applications of Baire Category Thenem (to function spaces)

Thutils The set of all continuous, nowhere differentiable functions forms a residual set in C[a,b] and hence dense in CCa,6J.

To prove the theorem, we med a lemma.

$$
\begin{array}{|l|l|}\n \hline \text{Lemma 4.2 : let } f \in C[a,b] \text{ be differentiable at } x \text{ . then} \\
\hline \text{It is Lipschitz continuous at } x \\
\hline \hline \text{If } \text{is clear near } x \text{ . The main issue is } f \text{-points not near } x \text{ .}\n \end{array}
$$

$$
\underline{P}f: By a asymptron (Y\xi>0) say \xi=1) \exists \delta_0>0
$$

such that $V y \in (X-\delta_0, X+\delta_0) \setminus \{X\}$ (e y \in [a,b])

$$
\left|\frac{f(y)-f(x)}{y-x} - f(x)\right| < 1
$$

$$
\Rightarrow |f(y) - f(x)| \le (1 + |f(x)|) |y - x|
$$

$$
\forall y \in (x - \delta_0, x + \delta_0) \cap [a, b]
$$

If
$$
[a,b] \setminus (x-\delta_0, x+\delta_0) = \emptyset
$$
, we are dme.
If not, then $\int a \cup \{E[a,b] \setminus (x-\delta_0, x+\delta_0)\}$,
 $(y-x) \ge \delta_0$

and hence

$$
|f(y)-f(x)| \le |f(y)| + |f(x)| \le 2\|f\|_{\infty} \le \frac{2\|f\|_{\infty}}{\delta_{\circ}} |y-x|
$$

Let
$$
L = max\{1 + |f(x)|, \frac{2||f||_{\infty}}{\delta_{0}}\}
$$
 we have
 $|f(y)-f(x)| \le L |y-x|, \forall y \in [a, b]$.

$$
\forall L>0
$$
, define
\n $S_{L} = \begin{cases} 5 \in C[0,1] : 5 \text{ is Lip.} \text{ the at same } x \in [0,1] \\ \text{ with } Lip. \text{ Const.} \le L \end{cases}$

Claim1:	S_L is closed.
BF:	Let $1\frac{1}{3}nS$ be a seg. $\tilde{u} \leq L$ which converges to
$S\tilde{w}_l \leq C[0,1]$ \tilde{u} do metric.	
By definition of S_L , $\forall n \geq 1$	
$\exists x_n \in [0,1]$ such that	
\tilde{f}_n is Lip. \tilde{f}_n at x_n with Lip const $\leq L$	
\tilde{f}_n	$\tilde{f}_n(x) - \tilde{f}_n(x_n) \leq L y - x_n $, $\forall y \in [0,1]$

We may assume that
$$
x_n \rightarrow x^*
$$
 for same $x^* \in [0,1]$
by passing to a subseq. (The corresponding subseq.
In a still can
respect $x \leq n \Rightarrow \pm$ in do)

$$
T_{\text{NQLM}} \left| \left\{ f(y) - f(x^*) \right| < \left| f(y) - f_{\text{M}}(y) \right| + |f_{\text{M}}(y) - f(x^*) \right|
$$

$$
\leq ||f-f_{n}||_{\infty} + |f_{n}(y) - f_{n}(x_{n})| + |f_{n}(x_{n}) - f(x^{k})|
$$
\n
$$
\leq ||f-f_{n}||_{\infty} + |f_{n-1}(x_{n}) - f_{n}(x^{k})| + |f_{n}(x^{k}) - f(x^{k})|
$$
\n
$$
\leq 2||f-f_{n}||_{\infty} + |f_{n-1}(x_{n}) + |f_{n}(x^{k}) - f(x^{k})|
$$
\n
$$
\leq 2||f-f_{n}||_{\infty} + |f_{n-1}(x_{n}) + |f_{n-1}(x^{k}) - f(x^{k})|
$$
\n
$$
\leq 2||f-f_{n}||_{\infty} + |f_{n-1}(x^{k}) - f_{n-1}(x^{k})|
$$
\n
$$
\leq 2||f-f_{n}||_{\infty} + |f_{n-1}(x^{k}) - f_{n-1}(x^{k})|
$$
\n
$$
\leq 2||f-f_{n}||_{\infty} + |f_{n-1}(x^{k}) - f_{n-1}(x^{k})|
$$

$$
Letting n \Rightarrow +\infty, we have
$$

\n
$$
|\{q\rangle - f(x^{*})| \le L|y - x^{*}| \quad , \quad \forall y \in [0,1]
$$

\n
$$
\Rightarrow f \in SL_{x} \times
$$

Claini	2 : S _L is nowhere	CI(0,11) S _L is dense
PS = Let $f \in S_L$		
By Weierstias: Appendix of f is a real, the f is a polynomial f such that		
1 $f - \rho$ $\infty < \frac{\varepsilon}{2}$		
Let f be L , r is a real, and the L , $Q(X)$ is the realization of f is a real, and the f		

Then consider the function
\n
$$
\mathcal{G}(x) = \mathcal{P}(x) + \frac{\varepsilon}{2} \varphi(x) \in C[\varphi, 1]
$$
\n
$$
\text{Then} \quad \|\varphi - f\|_{\infty} \le \|\varphi - f\|_{\infty} + \frac{\varepsilon}{2} \|\varphi\|_{\infty} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
$$

On the other found
\n
$$
|\frac{\epsilon}{2} \varphi(y) - \frac{\epsilon}{2} \varphi(x)| \le |g(y) - g(x)| + | \varphi(y) - \varphi(x)|
$$

\n⇒ $\frac{\epsilon}{2} | \varphi(y) - \varphi(x)| \le |g(y) - g(x)| + L_1 |y-x|$

Note that
$$
\forall x \in [0,1]
$$
, $\exists y \in [0,1]$ near x such that
\n
$$
|\psi(y) - \psi(x)| = \frac{1}{r} |y - x|
$$
\n
$$
\Rightarrow |g(y) - g(x)| \ge (\frac{\varepsilon}{2r} - L_1) |y - x|
$$

Hence
$$
\int w e d\omega
$$

$$
\forall x \in [0,1], \exists y \in [0,1]
$$
 such that

$$
|G(y)-G(x)| \geq (\frac{\epsilon}{2r} - L_1) |y-x| > L |y-x|.
$$

ie. YxEīb, 13. g is not lip. cīs at x with Lip austaut L.
\n
$$
\Rightarrow 945L
$$

We have proved that $\forall f \in S_L$, $\forall \epsilon > o$, $B^{\infty}_{\epsilon}(f) \setminus S_L \neq \emptyset$. By claim 1, SL is closed trance SL is nowhere dense.

Firal Step: Let $S = \{f \in CTO, I] = f \circ \text{differentiable}$ at some $x \in [0, I]$ Then by Lemma 4.12 , $\forall f \in S$, $f \in S_N$ fu same $N \in \mathbb{N}$. \Rightarrow $SC \bigcup_{N=1}^{\infty} S_N$.

By clauu 2, S is of 1st category.
And Baire Category Thm (uaarg CIO, 17 à complete)

$$
\Rightarrow
$$
 S faa empty interior.

Set of cts but nowhere differentiable functions on to ^I complement of ^S in Cto ^B is ^a residual set and dense in CTO IT

Remarks Is The Th^m and its proof provide no explicitexample not even ^a method to construct ^a contamas nowhere differentiable function

ris Anexplicit example was given by Weierstrass:

$$
W(x) = \sum_{n=1}^{\infty} \frac{C_n(3^n x)}{2^n} \quad \text{on } n
$$

it comes from Fourier series actually Weierstrass provided a family

<u>Further examples</u>

Left	Let $f: [a, b] \rightarrow \mathbb{R}$ be a function, and	
$L: \mathbb{R} \rightarrow \mathbb{R}$	$\{a \text{ some } a, p \in \mathbb{R}$	$(\frac{1}{b} \text{ degrees of } p \text{ degrees of$

 $\overline{}$