$$\frac{Pf}{P}:(A) \text{ let } E \subset X \text{ be a set of } |^{st} \text{ category.}$$

$$Then \quad E = \bigcup_{n=1}^{\infty} En \quad fn \text{ some nowhere dense set } En, n=13\cdots$$

$$\text{ let } F \subset E, \text{ then by } \operatorname{Prop } 4.7(a)$$

$$F \cap En \quad is \quad nowhere \quad dense, \forall n \quad (F \cap En \subset En)$$

$$Hence \quad F = F \cap E = \bigcup_{n=1}^{\infty} (F \cap En) \quad is \quad of \quad |^{st} \text{ category.}$$

(b) Let
$$E_n = \bigcup_{k=1}^{\infty} E_{n,k}$$
, $E_{n,k} = nowhere dense$.
 $\Rightarrow \bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} \left(\bigcup_{k=1}^{\infty} E_{n,k} \right) = \bigcup_{\substack{(n,k) \in N \times N}} E_{n,k}$
 $is of 1^{st}$ category. (since $N \times N$ is countable)

(c) If
$$E = \{x_i\}_{i=1}^{\infty} \subset X$$
, then $\operatorname{Rop} 4, \mathcal{H}(C)$
 $\Rightarrow \{x_i\} \subseteq \operatorname{nowhere} \quad dense \neq i$
 $\Rightarrow E = \bigcup_{i=1}^{\infty} \{x_i\} \quad \widehat{\omega} \quad of \quad I^{st} \quad category \quad (by part(b)) \notin X$

(Pf: By taking complement in Brop 4.8)

$$eg45$$
: IR has no isolated point (in standard metric)
⇒ $ig_{j}i$ is nowhere dense & rational number
⇒ Q is of 1st category
Hence II = IR \ Q the set of irrational numbers is a
residual set in R.

Pf: Let the complete motive space be
$$(X,d)$$
.
And let $E = \bigcup_{n=1}^{\infty} E_n \subset X$ be of 1st category
where $E_n \ge nowhere$ dense in X, Hn
Consider any open metric ball $B_r(x_0)$ of X .

Since
$$\overline{E}_i$$
 that empty interior (by deful of nourhere donseness),
 $(\underline{X}, \overline{E}_i) \cap B_{r_0}(x_0) \neq \emptyset$

Let
$$x_i \in (X \setminus \overline{E}_i) \cap B_{r_0}(x_0)$$
.
Since both $X \setminus \overline{E}_i \in B_{r_0}(x_0)$ are open,
 $\exists r_i > 0 \quad s.t.$ $\overline{B_{r_i}(x_i)} \subset (X \setminus \overline{E}_i) \cap B_{r_0}(x_0)$
and $r_i \leq \frac{r_0}{2}$ (as we can always choose a
smaller ball)
 $\Rightarrow \quad \overline{B_{r_i}(x_i)} \cap \overline{E}_i = \emptyset$

Nove
$$E_2$$
 is nowhere dense, \overline{E}_2 has empty interior.
 $\Rightarrow (X (\overline{E}_2) \cap B_{r_1}(X_1) \neq \phi$.

Similarly to the above, $\exists x_2 \in (X | \overline{E}_2) \cap B_{r_i}(x_1)$ and $r_2 > 0$ with $r_2 \leq \frac{y_1}{2}$ such that $\overline{B_{r_2}(x_2)} \subset (X | \overline{E}_2) \cap B_{r_i}(x_1) \begin{pmatrix} c(X | \overline{E}_2) \\ c B_{r_i}(x_1) \end{pmatrix}$

Note that
$$B_{r_2}(x_2) \subset B_{r_1}(x_1) \subset (X | E_1) \cap B_{r_0}(x_0) \subset X \setminus E_1$$
.
Repeating the process, we obtain $3x_n \cdot s_{n=1}^{\infty} \subset X$
and $4r_n \cdot s_{n=1}^{\infty} \subset \mathbb{R}_+$ such that

(q)
$$\overline{B_{r_{nti}}(X_{nti})} \subseteq \overline{B_{r_{n}}(X_{n})}$$

(b) $\overline{b_{n+1}} \leq \frac{\overline{b_{n}}}{\overline{z}}$
(c) $\overline{B_{r_{n}}(X_{n})} \subset \overline{X} \setminus \overline{E_{j}}, \forall j = 1, \dots, n$
 $(\overline{B_{r_{n}}(X_{n})} \cap \overline{E_{j}} = \phi, \forall j = 1, \dots, n)$

By (9) $e_1(b)$, $i \times n \leq i \leq a$ Cauchy seq. (Ex!) Hence completeness of $X \Rightarrow \exists x \in X \quad s, f \in x_n \Rightarrow x$.

By (a) again,
$$X_{n+m} \in \overline{B}_{Y_n}(X_n)$$
, $\forall m = 1, 2, 3, ...$
 $\Rightarrow \quad X \in \overline{B}_{Y_n}(X_n)$
By (a) $\leq (c)$ $\times \in \mathbb{X} \setminus \overline{E}_n$ and $B_{Y_n}(X_n)$
Sume n is analytrary, $X \in \bigcap_{n=1}^{\infty} (\mathbb{X} \setminus \overline{E}_n) = \mathbb{X} \setminus \left(\bigcup_{n=1}^{\infty} \overline{E}_n \right)$
 $\Rightarrow \quad X \in \left(\mathbb{X} \setminus \left(\bigcup_{n=1}^{\infty} \overline{E}_n \right) \right) \cap \overline{B}_{Y_n}(X_n)$

$$\Rightarrow \left(X \setminus \left(\bigcup_{n=1}^{Q} \overline{F_{n}} \right) \right) \cap B_{r_{0}}(x_{0}) \neq \phi$$

$$\Rightarrow \left(X \setminus \left(\bigcup_{n=1}^{Q} \overline{F_{n}} \right) \right) \cap B_{r_{0}}(x_{0}) \supset \left(X \setminus \left(\bigcup_{n=1}^{Q} \overline{F_{n}} \right) \right) \cap B_{r_{0}}(x_{0})$$

$$\neq \phi$$
Sunce $B_{r_{0}}(x_{0})$ is anotherapy, $E = \bigcup_{n=1}^{Q} \overline{F_{n}}$ thas empty interview.