Note: E is nowhere dense ⇔ X\E is dense is X Pf: E is nowhere dense ⇔ ∀x∈X & r>0, Br(x) ¢E (sie E cartais on ball) ⇔ ∀x∈X & r>0, Br(x) ∩ (X)E) ≠ ∅ ⇔ X\E is dense.

Def : Let (X,d) be a metric space. A point $X \in X$ is called an isolated point if $\{X\}$ is open in X.

- Notes: As $\{x\}$ is always closed in a metric space, $\{x\}$ is both <u>open and closed</u> in $\mathbb{Z} \iff x$ is an isolated point.
 - X isolated => {x} is not nowhere dense.

(b) let E1, E2 be nowhere dense sets
Then
$$G_1 = \mathbb{X} \setminus \overline{E_1}$$
 and $G_2 = \mathbb{X} \setminus \overline{E_2}$ are open dense
set.
Ulearly $G_1 \cap G_2$ is open.
Ulain: $G_1 \cap G_2$ is dense in \mathbb{X} .
Pf: $\forall x \in \mathbb{X} \ e \ r > 0$,
 G_1 dense $\Rightarrow B_r(x) \cap G_1 \neq \not =$
 $\Rightarrow \exists x_1 \in B_r(x) \cap G_1$.
Since $B_r(x) \cap G_1$ is open, $\exists p > 0$ such that
 $B_p(x_1) \subset B_r(x) \cap G_1$.
Now G_2 dense $\Rightarrow B_p(x_1) \cap G_2 \neq \not =$
 $\Rightarrow B_r(x) \cap (G_1 \cap G_2) = B_p(x_1) \cap G_2 \neq \not =$
This proves the clain.
Hence $\mathbb{X} \setminus (G_1 \cap G_2) = (\mathbb{X} \setminus G_1) \cup (\mathbb{X} \setminus G_2) = \overline{E_1} \cup \overline{E_2}$
is nowhere dense.

By (Q)(ii'),
$$E_1 \cup E_2 \subset \overline{E_1} \cup \overline{E_2}$$

 $\Rightarrow E_1 \cup E_2$ is also nowhere dense.
Then, induction $\Rightarrow \bigcup_{i=1}^{n} E_i$ is nowhere dense provided
 E_1, \vdots, E_k are nowlede dense.

Examples in infinite dimensional normed spaces

eg: let
$$MTa, bI = space of bounded functions on [a,b].$$

Then $\|f\|_{H} = \sup_{a,b} |f(x)|$ is well-defined and is a norm
on MTa, bJ .
(leady (CTa,b], dro) is a metric (also rectar) subspace of
(MTa,b], dro)
(lain: CTa,b] is nowhere dence in MTa, bJ
(Uniform limit of its. functions is its.)
Henre CTa,b] is nowhere dence in MTa, bJ
(Uniform limit of its. functions is its.)
Henre CTa,b] is nowhere dence in MTa, bJ
(Uniform limit of its. functions is dense)
Henre CTa,b] is nowhere dence in MTa, bJ
(Uniform limit of its. functions is dense)
Henre CTa,b] is nowhere dence in MTa, bJ
(Uniform limit of its. functions is dense)
Henre CTa,b] is nowhere dense in MTa, bJ
(Uniform limit of its. functions is dense)
Henre CTa,b], $CTa, bJ = MTa, bJ \setminus CTa, bJ = MTa, bJ \cap Ta, bJ \cap Ta$

eg: let
$$l_{00} = \text{space of bounded sequences with do metric
$$d_{00}(x,y) = \sup_{n} |x_{n} - y_{n}| \quad \text{for } x = 1 \times n^{3}, y = 2y_{n}^{3}$$
let $\mathcal{E} = \text{subset of convergent sequences}.$
Then \mathcal{E} is nowhere dense in (l_{0}, d_{0}) .
Ef: We only need to show (1) ε (2) in the following
(1) \mathcal{E} is closed in los.
Ef: (We'll show that $l_{00} \setminus \mathcal{E}$ is open)
let $x = 1 \times n^{3} \in l_{00} \setminus \mathcal{E}$
Then x_{n} diverges and
 $(+\infty >) \perp = \lim_{n \to \infty} y_{n} > \lim_{n \to \infty} x_{n} = l(>-\infty)$
Take $\varepsilon = \frac{l-l}{3} > 0$
then $\forall y = iy_{n}^{3} \in B_{\varepsilon}^{\omega}(x)$, we have
 $x_{n} - \varepsilon < y_{n} < x_{n} + \varepsilon$, $\forall n$
 $\int \lim_{n \to \infty} \lim_{n \to \infty} y_{n} - \varepsilon < \lim_{n \to \infty} y_{n}$
 $\int \lim_{n \to \infty} \sum_{n \to \infty} \lim_{n \to \infty} |x_{n} + \varepsilon|$
 $\Rightarrow \lim_{n \to \infty} \sup_{n \to \infty} |x_{n} - \varepsilon| = \frac{2l+l}{3} > \frac{l+2l}{3}$ (sino $L > l$)
 $= l + \varepsilon = \lim_{n \to \infty} \lim_{n \to \infty} |x_{n} \setminus \varepsilon| = \log_{\varepsilon} |x_{n}|$.
(sino $L > l$)$$

* this proves (1)

(2)
$$l_{\infty} (\xi (= l_{\infty} (\xi + b_{y}^{(1)}))$$
 is dense
Ef. let $B_{e}^{\infty}(x)$ be a ball in l_{∞} ,
we need to show that $B_{e}^{\infty}(x) \cap (l_{\infty}(\xi) \neq \emptyset)$
If $x \in l_{\infty} (\xi)$, we are done.
If $x \in \ell$, then $x = ix_{n} \xi$ is carrogent
let $L = l_{n} (x_{n})$
Then $\exists h_{0} > 0 \ s_{1}$. $|x_{n} - L| \leq \frac{\xi}{2}$, $\forall h \geq h_{0}$.
Define $y = iy_{n} \xi \in l_{\infty}$ by
 $y_{n} = \int_{k}^{\infty} L + \frac{\xi}{2}$, $y_{1} \cap n = h_{0} \ge n \text{ odd}$
 $\left(L - \frac{\xi}{2}, y_{1} \cap n \geq n \text{ odd}\right)$
Then $|x_{n} - y_{n}| = 0 \ z_{1} \cap n = n_{0} \ge n \text{ odd}$
 $|x_{n} - y_{n}| \le |x_{n} - L| + |L - y_{n}|$
 $\leq \frac{\xi}{2} + \frac{\xi}{2} = \frac{2\xi}{2} < \xi = \sum_{k}^{\infty} y_{1} \in \mathbb{R}_{0}^{\infty}(x)$

 $\Rightarrow d_{\infty}(x,y) \leq \frac{2\varepsilon}{3} < \varepsilon \Rightarrow y \in B_{\varepsilon}^{\infty}(x)$ However lucisup $y_n = (\pm \frac{\varepsilon}{3} > \lfloor -\frac{\varepsilon}{3} = \lim \inf f y_n.$

$$: \quad y \in l_{\omega} \setminus \mathcal{E} \implies B_{\varepsilon}^{\infty}(x) \cap (l_{\omega} \setminus \mathcal{E}) \neq \emptyset$$

- · A set is of second category if it is not of first category,
- A set is called <u>residual</u> if its <u>complement</u> is of first category.

Prop 4.8 Let (X, d) be a metric space. (a) Every subset of a set of 1st category is of 1st category. (b) The minor of <u>countable</u> many sets of 1st category is of (St category (c) If (X, d) that no islated point, then every countable subset of X is of 1st category.