\$4.2 Baire Category Thenem

Def let
$$(X,d)$$
 be a metric space. A set E in X is dense
if $\forall x \in X$ and $\varepsilon > 0$,
 $B_{\varepsilon}(x) \cap E \neq \emptyset$

Notes: (i) Easy to see that E is dense $\Leftrightarrow \overline{E} = \mathbb{Z}$. (ii) \mathbb{X} is dense (in (X,d))

eg: If
$$(X, \text{discrete metric})$$
, then for $0 < \varepsilon < 1$ and $X \in X$,
 $B_{\varepsilon}(X) = 1 \times \hat{s}$. Therefore E is dense in X
 $\Rightarrow E = X$ (i.e. X is the only dense set in $(X, \text{discrete})$)

eq1: In (IR, standard metric), Q and II = IR Q are dense.

eg2: Weierstrass approximation theorem implies the set of all polynomials of forms a dense set in (CTO, 1], dos).

Def: let (X,d) be a metric space. A subset ECX is called <u>nowhere dense</u> if its <u>closure</u> does not contain any metric ball. (i.e. \overline{E} thas empty interior $(\overline{E})^{\circ} = \phi$)