$$\frac{\operatorname{thm} 4.2}_{k} (\operatorname{Ascolist} \operatorname{Theorem})$$
Suppore that G is a bounded nonempty open set in IR^M. Then
a set $\mathcal{E} \subset (G) (= C_b(G))$ is precompact
if \mathcal{E} is bounded (insuprom) and equications.
Pf: Define $E = \bigcup_{k=0}^{\infty} E_k$, where
 $E_k = \{x = \frac{1}{2} \begin{pmatrix} e_k \\ h \end{pmatrix} \in G : k_1 \in \mathbb{Z}, i \neq j \ge M \end{pmatrix}$.
Then \overline{G} closed and bounded
 \Rightarrow E_k is furthe.
Hence $E = \bigcup_k E_k$ is constable.
Let $\{fn\}$ be a sequence in \mathcal{E} . Then \mathcal{E} bounded
 \Rightarrow $EM > 0$ such that $\|fn\|_{00} \leq M$, Hn
i.e. $|f_n(x)| \leq M$, $Hn \in A \times E\overline{G}$
In particular, $A \times E E$,
 $|f_n(x)| \leq M, Hn$.
i.e. If we arrange the points of E in a sequence
 $E = \mathcal{E} \neq \mathbb{S}$ is a bounded sequence.
Hence one can apply Lemma 4.3 to fad a subsequence

$$\begin{split} & \left| g_{n} \right|_{S} \circ f \left| f_{n} \right|_{S} & \left(u_{a} u_{y} + t_{e} - save notettan "n" for the index \right) \\ & such that \forall x \in E, g_{n}(x) is convergent. \\ & We claim that g_{n} is the required convergent subsequence \\ & of f_{n} in the number space (C(G), d_{lo}). \\ & \left(Note that we only clave pointwise convergence for countable \right) \\ & namy points at two numbers. \\ & Since (C(G), d_{lo}) is complete, we only need to show that \\ & (g_{n} \leq i = a - a), \\ & (C(G), d_{lo}) is complete, we only need to show that \\ & (g_{n} \leq i = a - a), \\ & (C(G), d_{lo}) is complete, we only need to show that \\ & (g_{n} \leq i = a - a), \\ & (C(G), d_{lo}) is complete, we only need to show that \\ & (g_{n} \leq i = a - a), \\ & (C(G), d_{lo}) is complete, we only need to show that \\ & (g_{n} \leq i = a - a), \\ & (G(G), d_{lo}) is complete, we only need to show that \\ & (g_{n} \leq i = a - a), \\ & (G(G), d_{lo}) is complete, we only need to show that \\ & (g_{n} (x) - g_{n}(y)) < \frac{e}{S}, \quad \forall n \in V, y \in G \text{ with } (x - y) < S. \\ & Note that if k satisfies the satisfies the satisfies the satisfies the satisfies the satisfies that \\ & (x - z_{j} | < \delta, (see figure)) \\ & and hence (g_{n}(x) - g_{n}(z_{j})| < \frac{e}{S}, \\ & (g_{n}(x) - g_{n}(x)) \leq (g_{n}(x) - g_{n}(z_{j})| + |g_{n}(z_{j}) - g_{m}(z_{j})| \\ & \quad + (g_{m}(z_{j}) - g_{m}(z_{j})| \\ & \quad + (g_{m}(z_{j}) - g_{m}(z_{j})|. \\ \end{array}$$

Since
$$\{g_n(z_j)\}$$
 is convergent, $\exists n_0 = n_0(z_j) \ge 0$ s.t.
 $|g_n(z_j) - g_m(z_j)| < \frac{\varepsilon}{\varepsilon}$, $\forall n, m \ge n_0(z_j)$.
 $\Rightarrow |g_n(x) - g_m(x)| < \varepsilon$, $\forall n, m \ge n_0(z_j)$. (z_j depends anx)
Now take $N_0 = \max_{z_j \in E_n} n_0(z_j) \ge 0$,
 $z_j \in E_n = s_{n \ge n} \le 0$,
then $\forall x \in \overline{G}$, we have
 $|g_n(x) - g_m(x)| < \varepsilon$, $\forall n, m \ge N_0$.
i.e. $||g_n - g_m||_{\infty} < \varepsilon$, $\forall n, m \ge N_0$.
This completes the proof of the Theorem. X

Remarks

(1) Ascoli's Theorem remains valid for bounded and equication upons subsets of C(G). (i.e. No need to take closure.) It is because "lequicantinuar" \Rightarrow " uniform containants on G'', and then can be extended to uniform containants on G. (Details omitted.)

(2) However, <u>boundedness</u> of the domain G cannot be removed:

Egf.3let $\overline{G} = [0, \infty) \subset \mathbb{R}$. $\begin{array}{c} \varphi \land A \\ \uparrow & \uparrow \end{array}$ Take a $\varphi \in C^1[0,1]$ such that0 $\frac{1}{2} \xrightarrow{3}{4}$ φ≠0 and φ(x)=0 m [0,1]、[:],彰] and define $f_{h}(x) = \begin{cases} \varphi(x-n), & \text{if } x \in [n, n+1] \\ 0, & \text{otherwise} \end{cases}$ Then one can easily check that $(in-fact fn \in C^{1}(G))$ $f_{n} \in C(\overline{G})$ and $\|f_{n}\|_{\infty,\overline{G}} = \|\varphi\|_{\infty,\overline{L}_{0,1}} > 0$ (and a fixed constant) :. E={fn} is bounded subset in ((G.). By Chain rule, $\left\| \frac{d f_n}{d x} \right\|_{\infty, \overline{G}} = \left\| \frac{d \varphi}{d x} \right\|_{\infty, \overline{IO}, \overline{IJ}} (> O_{-}) \text{ indep. of } n$. Hence Propt-1 implies that E=1 fn 5 is also <u>aquicantinuous</u>. Suppose 7 subsequence {for 5 of {for 5 converges to some fec(G) in do. ice. fri > f wifauly on G ⇒ pointuise convergence fini(x) → f(x), HXEE. However, for fixed x, fn(x)=0, 4n > x, we must have $\lim_{x \to t_{\infty}} \int_{M_{1}} (x) = 0 \quad \therefore \quad f(x) = 0 \quad \forall x \in \overline{G} \; .$

This is a contradiction, since

$$0 < ||\varphi||_{\infty,\overline{10}|\overline{3}|} = ||f_{n_{\overline{3}}}||_{\infty,\overline{6}} = ||f_{n_{\overline{3}}} - f||_{\infty,\overline{6}} \rightarrow 0$$

 $\therefore \quad \underline{\mathcal{E}} \text{ is not precompact}.$
Hence Ascoli's Theorem doesn't hold.

Converse to A Scoli's Theorem:

Pf: let
$$E \subset C(\overline{G})$$
 be precompact.
If E is unbounded, then $\exists fn \in E \subset C(\overline{G})$
such that $\lim_{n \to +\infty} \|f_n\|_{\infty} = \infty$.
Then this subset $\{fn\}$ of E cannot cartain any
convergent subsequence. This cartradicts the precompactness.
Hence E must be bounded.

Now suppose on the contrary that E is precompact, bounded but not equicationous.

And also denote the corresponding subseq. of $\{\forall n_k\}$ by $\{\forall n_k\}$, and the corresponding subseq. of $\{f_{a_k}\}$ by $\{g_{k}\}$. Then $\int g_{k} \Rightarrow f$ in $(C(G), d_{\infty})$ $\langle \chi_{k} \Rightarrow \chi$ in G

State $d(X_n, y_n) < \frac{1}{h}$, we have $d(X_k, y_k) \rightarrow 0$ as $k \neq \infty$ and hence $y_k \neq z \in \overline{G}$ too. Therefore, YE>O, I ko>O s.t. 119k-flloo<E, Yk>ko. and Ik1>O s.t. 15(xw)-f(z)1<E 1f(yw)-f(z)1<E

$$\begin{aligned} & [fence \quad fn \quad k > mex(ko,k,s), \\ & |g_k(x_k) - g_k(y_k)| \leq (g_k(x_k) - f(x_k)) + |f(x_k) - f(y_k)| \\ & + |f(y_k) - g_k(y_k)| \end{aligned}$$

$$< 2E + |f(X_k) - f(Y_k)|$$

 $< 2E + |f(X_k) - f(z)| + |f(z) - f(Y_k)|$
 $< 4E$

We've show that $\forall E \ge 0$, $\exists n_0 = n_{max} |k_0, k_1| \le 20$ such that $|f_{n_k}(x_{n_k}) - f_{n_k}(y_{n_k})| \le 4\varepsilon$, $\forall n_k \ge n_0$ Taking $\varepsilon = \frac{\varepsilon_0}{4}$, we have a cartradiction, $\vdots \in i_0$ equicartinuous. X

where $Mn = \|P_n\|_{\infty, R}$ $L_n = Lipschitz constant of <math>P_n \ on R$. St. $\exists unique solution X_n \in C'[t_o - a'_n, t_o t a'_n] to the$ $approximated (IVP) <math>\int \frac{dX_u}{dt} = P_n(t, X_n) \quad \forall t \in [t_o - a'_n, t_o t a'_n] \quad X_n(t_o) = X_0$ (3) Then try to apply Ascoli's Theorem to f_{X_n} 's and find a convergent subsequence $X_{h_k} \rightarrow X$ for some function X(t). And hope that X is the required solution.

Issue: Since f is not assumed to satisfy the Lipschitz condition
one cannot expect
$$\{L_n\}$$
 is bounded
(In fact, it is unbounded, Otherwise S satisfies Lip (andiction.)
Then min $\{\alpha, \frac{b}{M_n}, \frac{1}{L_n}\} \ge 0 \implies a'_n \ge 0$.
We will not have an "interval" for the existence of the solution.
(On the other trand, as $p_n \ge f$ in (C(R), dow), we trave)

Prop4.5 Under the setting of Picard-Lindelöf Theorem,
I unique solution X(t) on the interval [to-a', to+a]
with X(t) & [Xo-b, Xo+b], where a' is any number satisfying

$$0 < a' < a^{*} = \min \{a, \frac{b}{M}\}.$$

(barly, this implies I unique solution on the open interval
(to-a*, to+a*).

<u>Pf</u>: Omitted

Thm 4.6 (Gauchy-Peano Thenem)
Consider (IVP)
$$\begin{cases} dx = f(x,x) \\ x(t_0) = x_0 \end{cases}$$

where f is continuous on $R = [t_0 - a, t_0 + a] \times [x_0 - b, x_0 + b]$.
There exists $a' \in (0, a)$ and $a \subset 1 - function$
 $x : [t_0 - a', t_0 + a'] \longrightarrow [x_0 - b, x_0 + b]$
Solving the (IVP).

By Prop 4.5, \exists unique solution X_n defined on $I_n = (t_0 - a_n, t + a_n)$, where $a_n = \min\{a, \frac{b}{M_n}\}$, for the (IVP)

$$\begin{cases} \frac{dx_n}{dt} = p_n(t, x_n) \\ x_n(t_0) = x_0 \end{cases}$$

with $x_{n}(t) \in [x_{0}-b, x_{0}+b]$.

As
$$a_n = nuila, \frac{b}{M_n} \xi \rightarrow nuin \{a, \frac{b}{M} \xi = a^*\}$$
 we have

for any fixed
$$a' < a^*$$
 $(a'>0)$ $\exists n_0>0$ such that
for $n \ge n_0$, $[to-a', k_0+a'] \subset I_n = (to-a_n, to+a_n)$.
Hence $\forall n \ge n_0$, x_n is defined on $[to-a', to+a']$.
Claim $I : {x_n} C C[to-a', to+a']$ is equicantinuous.
In fact, $(IVP) \Longrightarrow |\frac{dx_n}{dt}| = |p_n(t, x_n)| \le M_n$ $\forall t$
Since $M_n \Rightarrow M$, $||\frac{dx_n}{dt}|_{\infty}$ is uniformly bounded.
By Prop f.1, $(x_n) \le c_{qui}(c_nthinuons)$.
 $[laim 7 : {x_n} \le c_{qui}(c_nthinuons),$
 $[laim 7 : {x_n} \le c_{qui}(c_nthinuons),$
 $[laim 7 : {x_n} \le c_{qui}(c_nthinuons),$
 $[x_n(ts)] \le (x_0 + a' sup |p_n(s, x_n(s))| \le |x_0| + a' M_n$
 $\Rightarrow ||x_n||_{s_0, [to-a', to+a']}$ is uniformly bounded.
 $= ||x_n||_{s_0, [to-a', to+a']}$ is uniformly bounded.

Then Claims $| \ge 2$ allow us to apply Ascoli's Theorem to conclude that $\exists a$ subsequence $\times n$, in CIto-a', to+a' \exists conveyes writing to a cts. function $\times n$ $[t_0-a', t_{0+a'}]$.

Claund:
$$X$$
 solves (IVP) $\begin{cases} \frac{dx}{dx} = f(x,x) \\ x(x,o) = x_o \end{cases}$

Proof of Claim 3: We only need to show that $X(t) = x_0 + \int_{t_0}^{t} f(s, x(s)) ds.$

Note that $X_{n_{\tilde{j}}}$ satesfies $X_{n_{\tilde{j}}}(t) = X_0 + \int_{t_0}^{t} P_{n_{\tilde{j}}}(s, X_{n_{\tilde{j}}}(s)) ds$.

(learly
$$X_{nj}(t) \rightarrow X(t)$$
 as $j \rightarrow +\infty$. We only need to show that
 $\lim_{j \to \infty} \int_{t_0}^t P_{nj}(s, X_{nj}(s)) ds = \int_{t_0}^t f(s, X(s)) ds$.

Since $f \in (\mathbb{R})_{\mathcal{R}} \mathbb{R}$ is closed a bounded in \mathbb{R}^{2} , f is uniformly contributions on \mathbb{R} . Therefore, $\forall \mathcal{E} > 0$, $\exists \overline{\partial} > 0$ such that $\forall (S_{1}, X_{1}), (S_{2}, X_{2}) \in \mathbb{R}$ with $|S_{1} - S_{2}| < \overline{\partial}$ and $|X_{1} - X_{2}| < \overline{\partial}$, we have $|f(S_{2}, X_{2}) - f(S_{1}, X_{1})| < \varepsilon$.

On the other hand,
$$\|Pn - f\|_{bo,R} \rightarrow 0$$

 $\Rightarrow \exists n_{0} > 0 \text{ s.t.} |Pn(s,x) - f(s,x)| < \varepsilon, \forall (s,x) \in \mathbb{R}.$
Therefore, for j sufficiently large such that
 $M_{\tilde{j}} \geq n_{0} \geq \|X_{0\tilde{j}} - x\|_{\infty} < \delta_{j}$

we have

$$\begin{split} \left| \int_{x_{0}}^{t} Pn_{j}(s, Xn_{j}(s)) ds - \int_{x_{0}}^{t} f(s, X(s)) ds \right| \\ &\leq \left| \int_{x_{0}}^{t} Pn_{j}(s, Xn_{j}(s)) ds - \int_{x_{0}}^{t} f(s, Xn_{j}(s)) ds \right| \\ &+ \left| \int_{x_{0}}^{t} f(s, Xn_{j}(s)) ds - \int_{x_{0}}^{t} f(s, Xn_{j}(s)) ds \right| \\ &\leq \int_{x_{0}}^{t} \left| Pn_{j}(s, Xn_{j}(s)) - f(s, Xn_{j}(s)) \right| ds \\ &+ \int_{x_{0}}^{t} \left| f(s, Xn_{j}(s)) - f(s, Xn_{j}(s)) \right| ds \\ &+ \int_{x_{0}}^{t} \left| f(s, Xn_{j}(s)) - f(s, Xn_{j}(s)) \right| ds \\ &\leq \varepsilon \cdot a' + \varepsilon \cdot a' = 2\varepsilon a', \end{split}$$

This shows that $\int_{x_0}^{t} p_{n_{\tilde{j}}}(s, x_{n_{\tilde{j}}}(s)) ds \rightarrow \int_{t_0}^{t} f(s, x(s)) ds$ as $\tilde{j} \rightarrow +\infty$.

Another approach to Cauchy-Peano Theorem working Ascobi's Theorem
(Piecewitz Lincor Approximation)
W R=[to-a, to+a] × [Xo-b, Xo+b]
M = aup[f(t,X)] as before.
(May assume M > 1 as we ally word an upper bd)
Refuire W = {(t,X) \in R = |X-Xo| \le M|t-to|}
By Symmetry,
proj(W) arto t- axis is [to-al, to+al] for some a' ((0, a]).
Note that
$$f \in C(R) \Rightarrow f \in C(W)$$

 $\Rightarrow f$ is uniformly continuous on W (Since W is closed & bounded)
 $\Rightarrow V E>0, \exists \delta>0$ such that
 $V(t_1,X_1), (t_2,X_2) \in W$ with
 $It_1-t_2| < J$ and $[X_1-X_2| < \delta_2]$

we have

$$\left| \int (t_{z_j} X_{z_j}) - \int (t_{i_j} X_{i_j}) \right| < \varepsilon$$

On the (half) interval
$$[t_{0}, t_{0}+a']$$
, choose
 $t_{0} < t_{1} < t_{2} < \cdots < t_{k} = t_{0}+a'$
with $|t_{i} - t_{i-1}| < \frac{\delta}{M}$ for $i = 1, \dots, k$

Define a function
$$k_{2}(t)$$
 on $[t_{0}, t_{0}+d]$
(1) $k_{2}(t_{0}) = x_{0}$,
(2) $k_{1} | \begin{bmatrix} t_{1}, t_{1}, t_{1} \end{bmatrix}$ is linear
with slape $f(t_{1}, t_{1}, x_{1})$
undere x_{1} can be detrived successively by :
(1) x_{1} detrived by $k_{2} | \begin{bmatrix} t_{0}, t_{1} \end{bmatrix}$ is linear, its graph pawery
through (t_{0}, x_{0}) and with slape $f(t_{0}, x_{0})$.
(i) Note that $| f(t_{0}, x_{0}) | x_{1} | x_{1} | x_{0} | x_{1} | x_{0} | x_{0}$

$$k_{th}(t) \rightarrow k(t) \in ([t_0, t_0 + \alpha])$$
 as $l \rightarrow +\infty$.

To show R(z) satisfies the differential equation, we first show that f_{z} is an approximated solution (including $E = \frac{1}{Ne} > 0$)

For this E>0, let
$$5>0$$
 be the corresponding quetity for
uniform contribute of f , and ti as in the construction of $ke(x)$.
Cansider $t \in [t_0, t_0+a']$ and $t \neq t_{\overline{i}}$, $\overline{i}=0, j_{\cdots}, k_{\overline{i}}$.
Then $\exists j=1, z, \cdots, k$ such that $t_{j-1} < t < t_j$.
Using $|t-t_{j+1}| < |t_j-t_{\overline{j}+1}| < \overline{M}$, we have
 $|k_2(t_{\overline{j}}) - k_2(t_{\overline{j}+1})| \leq M|t-t_{\overline{j}+1}| < \delta$,
Hence

Surce ke is piecewise linear,

$$k_{\epsilon}(t) = f(t_{j+1}, k_{\epsilon}(t_{j+1}))$$
 (by our construction)

Hence

$$\left(k_{\varepsilon}(t) - f(t, k_{\varepsilon}(t))\right) < \varepsilon$$
, $\forall t \in [t_{0}, t_{0}, t_{0}$

As
$$k_{\varepsilon}(t_{o}) = x_{o}$$
, $k_{\varepsilon}(t_{\varepsilon})$ is an approximated solution to
 $\begin{pmatrix} IVP \end{pmatrix} \begin{pmatrix} dx \\ dt \end{pmatrix} = f(t, X) \\ \chi(t_{o}) = x_{o} \end{pmatrix}$ on $(t_{o}, t_{o} + q')$

in the sense that
$$\begin{cases} \frac{dk\epsilon}{dt} = f(t, k\epsilon) + remainder (except finitely $\chi(to) = \chi_0$ many points)$$

with Il remainder II ~ E.

Integrating the ODE, we have

$$\Rightarrow \quad k_{e}(t) = k_{e}(t_{0}) + \sum_{i=1}^{d-1} \int_{t_{i-1}}^{t_{i}} k'_{e}(s) ds + \int_{t_{j-1}}^{t} k'_{e}(s) ds$$

$$= \chi_{0} + \int_{t_{0}}^{t} k'_{e}(s) ds$$

$$\Rightarrow \quad \left| k_{e}(t) - \chi_{0} - \int_{t_{0}}^{t} f(s) k_{e}(s) ds \right| \leq \int_{t_{0}}^{t} \left| k'_{e}(s) - f(s) k_{e}(s) \right| ds < \epsilon \alpha'.$$

In particular, if we denote $g_{\ell} = k_{\eta_{\ell}}$, (ie $\epsilon = \frac{1}{\eta_{\ell}} \rightarrow 0$), then $|a_{\ell+1} - x_{\ell}| = (\frac{1}{\ell}(s_{\ell} - q_{\ell}(s))ds)| < \frac{a'}{\ell}$ is the set

$$\left| \mathcal{G}_{\ell}(t) - X_{o} - \int_{t_{o}}^{t} \mathcal{G}_{v}(s) ds \right| \leq \frac{a'}{n_{\ell}}, \quad \forall \ l = 1, 2, 3, \cdots$$

Hence

$$\begin{split} & \sum_{k=0}^{2} \left[k(x) - x_{0} - \int_{x_{0}}^{x} f(s, k(s)) ds \right] \\ & \leq \left[k(x) - x_{0} - \int_{x_{0}}^{x} f(s, k(s)) ds - g(x) + x_{0} + \int_{x_{0}}^{x} f(s, g(s)) ds \right] \\ & \quad + \left[g_{2}(x) - x_{0} - \int_{x_{0}}^{x} f(s, g_{1}(s)) ds \right] \\ & \quad + \left[g_{2}(x) - x_{0} - \int_{x_{0}}^{x} f(s, g_{1}(s)) ds \right] \\ & \leq \left[\left[k - g_{1} \right]_{00} + \int_{x_{0}}^{x} \left[f(s, g_{1}(s)) - f(s, k(s)) \right] ds + \frac{q/}{n_{1}} \right]. \end{split}$$

Since
$$\|g_{\ell} - \hat{R}\|_{\infty} \rightarrow 0$$
 and f is uniform continuity,
$$\int_{x0}^{x} |f(s, g_{\ell}(s)) - f(s, k(s))| ds \rightarrow 0 \quad as \hat{j} \rightarrow t \infty$$

Therefore by letting
$$l \Rightarrow +\infty$$
, we have
 $k(t) = X_0 + \int_{t_0}^{t} f(s, h(s)) ds$, $\forall t \in [t_0, t_0 ta']$.
 $\Rightarrow \int_{t_0} \frac{dk}{dt} = f(t, k(t)) \quad \forall t \in [t_0, t_0 ta']$
 $k(t_0) = X_0$.

Similarly argument
$$\Rightarrow \exists k m t \in [t_0 - a', t_0]$$

Satisfying $\int \frac{dk}{dt} = f(t, k(t)) \forall t \in [t_0 - a', t_0]$
 $\int \frac{dk}{dt} = x_0$.

Note that by construction

$$\frac{dk}{dt}(t_0) = f(t_0, x_0) = \frac{dk}{dt}(t_0).$$

Hence
$$X(t) = \int h(t) f(t) dt \in [t_0, t_0 + a']$$

 $T_k(t), t \in [t_0 - a', t_0]$
 $T_k(t), t \in [t_0 - a', t_0]$
 $T_k(t), t \in [t_0 - a', t_0]$