Eq 4.1 (Equivalations, but unbounded)

\nLet
$$
X = E\cup 13
$$
 and consider

\n
$$
\xi = \{x \in C[E, 13 : x(x) = x, x \in E \cup 13\}
$$
\n
$$
\forall x \in \xi, \quad |x(x) - x(s)| \le ||x'||_{\infty} |t-s| \le |t-s|
$$
\n
$$
\Rightarrow \xi \text{ is equivalent to a above }.
$$
\nBut ξ is unbounded:

\n
$$
x_{n}(x) = \frac{k^{2}}{2} + n \in \xi
$$
 has\n
$$
||x_{n}||_{\infty} = \frac{1}{2} + n \Rightarrow +\infty
$$
 as $n \Rightarrow +\infty$.\n(Clearly, $\{x_{n}\}$ is an no convergent subsequence.)

\nLet $\mathcal{B} = \{f \in C[D, 13 : [f(x)] \le |, \forall x \in [0, 13] \} = \frac{\sqrt{20}}{2}$.

\nThen $\mathcal{B} \circ \text{closed}$ and bounded.

\nTo show that $\mathcal{B} \circ \text{in}$ or a convergent subsequence.

\nLet $\{\frac{1}{2}x^{(k)}\} = \frac{1}{2}$ for all $k \in \mathbb{Z}$.

\nThen $\mathcal{B} \circ \text{closed}$ and bounded.

\nTo show that $\mathcal{B} \circ \text{in}$ or a convergent function.

\nLet $\{\frac{1}{2}x^{(k)}\} = \text{min} \times \sum_{n=1}^{\infty} \subset \mathcal{B}$.

\nSuppose on the ordinary that $\{\frac{1}{2}x^{(k)} = 1, \text{max} \times \sum_{n=1}^{\infty} \circ \text{equation time}$.

\nThen $f_{n} \in \{\frac{1}{2} \} \exists \delta > 0$ such that

Ans1, x xyE[0,1] with |x-y|
$$
5
$$
, we have

\n
$$
|\sin nx - \sin ny| < \frac{1}{2}
$$
\nHowever, f_{on} any 5>0, if $x > max$ { $\frac{\pi}{25}$, $\frac{\pi}{25}$ }

\nwe have $x=0$ a $y=\frac{\pi}{2n}$ \in [0,1] with |x-y| 5

\nand |ain 0 - $sin x$ { $\frac{\pi}{2n}$ } = |0-1| = 1 > $\frac{1}{2}$

\nwhich is a undradiction.

\n3. Aûn x $\sum_{n=1}^{\infty} x$ not equiantànae.

Lamma43 Let
$$
A = \{z_j\}_{j=1}^{\infty}
$$
 be a countable set and
\n $f_n : A \Rightarrow \mathbb{R}_y$ $n = 1, 2, ...,$ be a sequence of functions
\ndefined on A. Suppose that f_n each $z_j \in A$,
\n $\{f_n(z_j)\}_{n=1}^{\infty}$ is a bounded sequence in \mathbb{R}_x .
\nThen there exist a subsequence $\{f_{n_k}\}_{k=1}^{\infty}$ of $\{f_n\}_{n=1}^{\infty}$
\nsuch that $\forall z_j \in A$,
\n $\{\hat{f}_{n_k}(z_j)\}_{j\in\omega}$ convergent.

$$
\begin{array}{ll}\n\mathbf{Pf}: & Since \quad f_n(z_1) \quad \text{is a bounded sequence} \quad (\text{in } \mathbb{R}) \\
\exists \quad \alpha \quad \text{subsequence} \quad \mathbf{S}_n^1 \quad \text{such that} \\
& \quad \mathbf{S}_n^1(z_1) \quad \text{is a compact.} \\
& \quad \mathbf{S}_n^1(\mathbf{S}_n) \quad \text{is a compact.}\n\end{array}
$$

Note that we have used the same index n to denote the subsequence 5_{n_k} The superscript 1 is to denote that it is conveyent when evaluated at t .

For this subsequence
$$
f'_n
$$
 (of original f_n),

\n
$$
f'_n(z_2)
$$
 is bounded (see $\{f'_n(z_2)\} \subset \{f_n(z_2)\}$).\nHow z_n is also bounded (see $\{f'_n(z_2)\} \subset \{f'_n(z_2)\}$).

\nNote that $\{f'_n(z_2)\}$ is caused, of $\{f'_n\}$ is also a subsequence of $\{f'_n(z_2)\}$ is a subseq, of the convergent subsequence $\{f'_n(z_1)\}$).

\nAlso, $\{f'_n(z_1)\}$ is also a subseq, of the convergent subsequence $\{f'_n(z_1)\}$;

\nthen $\{f'_n(z_1)\}$ is also correspond.

\nThen $\{f'_n(z_1)\}$ is also an integer. If $\{f'_n\}$ is the subsequence of $\{f'_n(z_1)\}$.

\nIt is also a subsequence of $\{f'_n(z_1)\}$ and $\{f'_n(z_1)\}$ are an integer.

\nIt is not possible to find $\{f'_n(z_1)\}$ are an integer.

Reparting the process, one can obtain sequences { f_n^5 } (with $f_n^0 = f_n$) $such$ that

(i)
$$
\{f_n^{3+1}\}\}
$$
 is a subséqueue of $\{f_n^{3}\}\$, $\forall j=0,1,3...$
(ii) $\{f_n^{3}(z_1)\}, \{f_n^{3}(z_2)\},...$ $\{f_n^{3}(z_j)\}$ are convergent $(j\ge1)$

$$
f_{1}^{1} f_{2}^{1} f_{3}^{2} \t f_{1}^{2} f_{2}^{2} f_{3}^{3} \t f_{1}^{2} \t f_{1}^{2} f_{2}^{3} \t f_{1}^{2} \t f_{1}^{3} \t f_{1}^{2} \t f_{1}^{3} \t f_{1}^{2} \t f_{1}^{3} \t f_{1}
$$

Define
$$
Q_n = f_n^n
$$
, $\forall n \ge 1$. (the diagonal sequence).

\nthen $\{g_n\}$ is a subsequence of $\{f_n\}$ and

\nSo any fixed $j=1,2,...$ $g_n(z_j) = f_n^n(z_j)$

\nAs $n \Rightarrow \infty$, $n \ge 3$ for sufficiently large n .

\nHow $\{f_n(z_j)\}$ is a subsequence of the convergent sequence.

\n $\{f_n(z_j)\}$ is a subsequence of the convergence

\n $\{f_n(z_j)\}$ is a nonnegative sequence of the complex sequence.

\nThus, the complex $\{g_n(z_j)\}$ is a complex number.

\nThis can be defined as $\exists p \in \mathbb{Z}$ and $\exists p \in \mathbb{Z}$.

\nThis method of finding g_n is called the *Cartars* diagonal.