Eg.4.1 (Equientinums, but unbounded)
let X=EJJJ and causider

$$E=\{x \in CEJJ : x(t) = t, t \in EJJJ\}.$$

 $\forall x \in E, |x(t) - x(s)| \leq ||x|||_{00}|t-s| \leq |t-s|.$
 $\Rightarrow E is equicantinuous (as above).$
But E is unbounded:
 $x_n(t) = \frac{t^2}{2} + n \in E$ has
 $||x_n||_{00} = \frac{t}{2} + n \Rightarrow +\infty \text{ as } n \Rightarrow +\infty.$
(clearly, $\{x_n \leq tian no \text{ convergent subsequence.}\}$
Eg.4.5 (closed & Bounded, but not Equicantinuous)
hat $B = \{f \in Cio, 1] = |f(x)| \leq \}, \forall x \in Eo, 1]\} (= B_1^{o_1}(o))$
Then B is closed and bounded.
To show that D is not equicantinuous, we only need to find
a subset of B which is not equicantinuous.
Let $\{f_n(x) = ain nx \leq_{n=1}^{\infty} \subset B$.
Suppose on the contrary that
 $\{f_n(x) = ain nx \leq_{n=1}^{\infty} i a equicantinuous.$
Then $f_n E = \frac{1}{2}, \exists \delta > 0$ such that

$$\forall n \ge 1$$
, $\& x, y \in [0, 1]$ and $|x - y| < 5$, we have
 $|A\bar{u}nx - A\bar{u}ny| < \frac{1}{2}$.
However, for any $5 > 0$, if $x > max i = \frac{1}{25}$, $\frac{1}{25}$, $\frac{1}$

Lemma 4.3 Let
$$A = \{z_j\}_{j=1}^{\infty}$$
 be a countable set and
 $f_n = A \rightarrow \mathbb{R}$, $n=1,2,...$, be a sequence of functions
defined on A . Supprese that for each $z_j \in A$,
 $\{f_n(z_j)\}_{n=1}^{\infty}$ is a bounded sequence in \mathbb{R} .
Then there exists a subsequence $\{f_n\}_{k=1}^{\infty}$ of $\{f_n\}_{n=1}^{\infty}$
such that $\forall z_j \in A$,
 $\{f_{n_k}(z_j)\}_{k=1}^{\infty}$ is convergent.

$$Pf$$
: Since $f_n(z_1)$ is a bounded sequence (in $|R\rangle$),
 \exists a subsequence f'_n such that
 $f'_n(z_1)$ is convergent.

(Note that we have used the same index n to denote the subsequence S_{n_k} .) (The superscript 1 is to denote that it is conveyent when evaluated at Ξ_1 .)

Repeating the process, one can obtain sequences $\{f_n^{i}\}$ (with $f_n^{i} = f_n$) such that

(i)
$$\{f_n^{\hat{j}}(z_1)\}, \{f_n^{\hat{j}}(z_2)\}, \dots, \{f_n^{\hat{j}}(z_{\hat{j}})\}\$$
 are convergent $(\hat{j} \ge 1)$

$$\begin{array}{c|c} f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ f_{n}^{\prime} & f_{n}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ f_{n}^{\prime} & f_{n}^{\prime} & f_{n}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ f_{n}^{\prime} & f_{n}^{\prime} & \cdots & f_{n}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ f_{n}^{\prime} & f_{n}^{\prime} & \cdots & f_{n}^{\prime} & \cdots & f_{n}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ f_{n}^{\prime} & f_{n}^{\prime} & f_{n}^{\prime} & \cdots & f_{n}^{\prime} & \cdots & f_{n}^{\prime} & \cdots & f_{n}^{\prime} & \cdots \\ f_{n}^{\prime} & f_{n}^{\prime} & f_{n}^{\prime} & \cdots & f$$

Define
$$g_n = f_n^n$$
, $\forall n \ge 1$. (the diagonal sequence),
then $\{g_n\}$ is a subsequence of $\{f_n\}$ and
fn any fixed $j=j_2\cdots$, $g_n(z_j) = f_n^n(z_j)$
As $n \ge \infty$, $n \ge j$ for sufficiently large n .
Hence $\{f_n^n(z_j)\}$ is a subsequence of the convergent sequence
 $\{f_n^{(z_j)}\}$ for all sufficiently large n .
Therefore $\{g_n(z_j)\}$ is convergent.
This completes the proof of the lamma. X
(This method of finding g_n is called the Cantor's diagonal trick.)