\$3.4 <u>Picard-Lindelö</u> Theorem for Differential Equations

Let
$$f$$
 be a function defined on
 $R = [t_0 - a, t_0 + a] \times [x_0 - b, x_0 + b]$ where $(t_0, x_0) \in [R^2$
and $a, b > 0$.
We consider Cauchy Problem (Initial Value Problem)
(IVP) $\begin{cases} \frac{dx}{dt} = f(t, x) \\ \pi(t_0) = x_0 \end{cases}$

it. Sind a function X(+) defined in a perhaps smaller interval

such that
$$\chi(t)$$
 is differentiable,
 $\chi(t_0) = \chi_0$, and
 $d\chi(t_0) = f(t, \chi(t_0))$, $\forall t \in [t_0, a', t_0+a']$

for some $0 < \alpha' \leq \alpha$.

eg3.14 Consider $\begin{cases} \frac{dx}{dt} = 1+x^2 \\ x(0)=0 \end{cases}$ Here $f(t,x) = 1+x^2$ is smooth on $[-2,q] \times [-b,b]$ for any a,b>0. However, the solution x(t) = tant defined only on $(-\frac{\pi}{2}, \frac{\pi}{2})$. :. Even for nice f, we may still have a' < a. Recall:

(i)
$$f$$
 defined in $R = [to - a, to + a] \times [to - b, to + b]$ satisfies the
Lipschitz condition (uniform in t)
if $\exists L > 0 \quad s.t. \quad \forall (t, x_i), (t, x_2) \in R,$
 $|f(t, x_i) - f(t, x_2)| \leq L|x_i - x_2|.$

(ii) In ponticular, f(t, •) is Lip. ets in x, Y + e[to-9, tog]

(IV) If L is a Lip. constant for f, then any L'>L is also a Lip. constant.

(V) Not all cto. functions satisfy the Lip. condition.

$$eg = f(t,x) = t x^{\frac{1}{2}}$$
 is its, but not Lip. near 0.

(vi) If $R = [t_0 - a, t_0 t_a] \times [x_0 - b, x_0 + b]$ and $f(t, x) = R \longrightarrow R \longrightarrow C',$ then f(t, x) satisfies the Lip. (and)ition: $in fact, fasce y \in [x_0 b, x_0 + b],$ $H(t, x_0) - f(t, x_0) = \left| \stackrel{\rightarrow}{\Rightarrow} f(t, y) (x_0 - x_0) \right|$ (Hence $H(t, x_0) - f(t, x_0) \le L[X_2 - x_0],$ $for L = max \left\{ \left| \stackrel{\rightarrow}{\Rightarrow} f(t, x_0) \right| = (t, x_0) \in R \right\}.$

Note: One will see in the following proof that a' can be taken
to be any number satisfying
$$D < a' < \min \{a, \frac{b}{M}, \frac{L}{L}\}$$

where $M = \sup\{|f(t, x)| = (t, x)\in R\}$ e L = Lip, const. for f.

$$\frac{P_{rop 3.11}}{F_{rom 1}}: \text{ Setting as in Thm 310, every solution } \times \text{ of (IVP)}$$
from [to-a', to+a'] to [xo-b, xo+b] satisfies
$$\frac{1}{F_{rom 1}} = \frac{1}{T_{rom 1}} + \int_{T_{rom 1}}^{T_{rom 1}} \frac{1}{T_{rom 1}} + \int_{T_{rom 1}}^{T_{rom 1}}$$

Proof of Picard-Lindolöf Thenem:
For also to be chosen later, we let

$$X = \{\varphi \in C[to-a', tota']: \varphi(t_o) = X_o, \varphi(t) \in [X_ob, X_obs]\}$$

with (unifam) metric doo on X.
First note that X is a closed subset in the complete metric
space (C[to-a', tota], doo). Hence (X, doo) is complete.
Refue T on X by
(T\varphi)(t) = X_o + $\int_{X_o}^{t} f(s, \varphi(s)) ds$
(This is well-dofared as $\varphi(s) \in [X_o \cdot b, X_o + b]$.
Ularly T $\varphi \in C[t_o \cdot a', t+a'] & (T \varphi)(t_o) = X_o.$
To show $T\varphi \in X$, we need (T\varphi)(t_o) \in [X_o - b, X_o + b].

Let
$$M = \sup_{(x,y) \in \mathbb{R}} |f(t,x)|$$
.
Then $\forall t \in [to-a', t_0+a']$,
 $|(T\varphi)(t) - x_0| = |\int_{t_0}^t f(s, \varphi(s))ds| \leq M |t-t_0|$
 $\leq Ma'$
If we choose $0 < a' \leq \frac{b}{M}$, then
 $|(T\varphi)(t) - x_0| \leq b$
 $\Rightarrow T\varphi \in \mathbb{X}$.
This is, for $0 < a' \leq \frac{b}{M}$, $T: \mathbb{X} \Rightarrow \mathbb{X}$ is o self-troop
from a complete metric space (\mathbb{X}, d_{c_0}) to tack.
To see underler T is a contraction, we check
 $|(T\varphi_2 - T\varphi_1)(t_2)| = |(X_0 t \int_{t_0}^t f(s, \varphi_2(s))ds) - (X_0 t \int_{t_0}^t f(s, \varphi_1(s))ds)|$
 $\leq \int_{t_0}^t |f(s, \varphi_2(s)) - f(s, \varphi_1(s))| ds$
 $\leq L |t_1 - t_0| \quad \text{sup} \quad |\varphi_2(s) - \varphi_1(s)|$
 $\leq L a' d_{g_0}(\varphi_2, \varphi_1)$

Therefore, if we further require
$$La' = \sigma < 1$$
,
then T is a contraction:

$$d_{00}(TP_{2}, TP_{1}) \leq \otimes d_{00}(P_{2}, P_{1})$$
 with $Y = La' < 1$.
In conclusion, if $0 < a' < \min\{a, \frac{b}{M}, \frac{1}{L}\}$,
How $T = X \gg x$ is a cartraction on a complete metric space.
Therefore, by Cartraction Mapping Principle, T admits a
unique fixed paint $x(x) \in X$.
By Brop 3.11, we're proved Thun 3.10. X

 (2) Uniqueness holds repardless of the size of the interval of existence. (Proof omitted as it is more in the curriculum of ODE. See Prof Chon's notes for a proof.)

$$\begin{array}{l} Thm 3.13 \quad (Picard-Lindellöf Theorem for Systems) \\ \hline Consider \quad (IVP) \quad \left\{ \begin{array}{l} \frac{dx}{dt} = f(t,x) \\ \times(t\circ) = x\circ \\ \times(t\circ) = x\circ \\ \end{array} \right. \quad xo = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \\ \end{array} \right\} \\ \hline where \quad xth = \begin{pmatrix} x_{1}(w) \\ \vdots \\ x_{n}(t) \end{pmatrix} \in [x_{1}\cdotb,x_{1}tb] \times \cdots \times [x_{n}\cdotb,x_{n}tb] \quad and \\ f(t,x) = \begin{pmatrix} f_{1}(t,x) \\ \vdots \\ f_{n}(t,x) \end{pmatrix} \in C^{1}(R), \text{ with} \\ R = [t\circ-a, t\circ+a] \times [x_{1}\cdotb,x_{1}tb] \times \cdots \times [x_{n}\cdotb,x_{n}tb], \\ \text{saliofying (Lipschitz condition (uniform in t))} \\ \quad |f(t,x) - f(t,y)| \leq L(x-y) \quad , \forall (t,x), (t,y) \in R, \\ \text{for some constant } L > 0 \\ \text{There exists a unique solution } \times \in C^{1}[t\circ-a', t\circ+a'] \quad with \\ xit) \in [x_{1}\cdotb,x_{1}tb] \times \cdots \times [x_{n}\cdotb,x_{n}+b] , \forall t\in[t\circ a', t\circ+a'] \\ \text{to (IVP), underse a' solutifies} \\ O$$

(4) The Picard-Lindelöf Thenen for system can be applied to initial value problem for higher order ordinary differential etions: $\frac{d^{m}x}{dt^{m}} = f(t, x, \frac{dx}{dt}, \dots, \frac{d^{m-1}x}{dt^{m-1}})$ $\begin{array}{c} X(t_{0}) = X_{0} \\ X(t_{0}) = X_{1} \\ \vdots \\ \frac{d^{m-1}x}{dt} \\ \frac{dt^{m-1}(x_{0})}{dt} = X_{m-1}
\end{array}$ equations : By letting $\vec{X} = \begin{pmatrix} dx \\ dt \\ dt \\ dt \end{pmatrix}$, then $\frac{d\hat{x}}{dt} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{d^2x}{dt^2} \\ \frac{d}{dt^2} \\ \frac{d}{dt^2}$ with $\overline{X}(t_0) = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{m_1} \end{pmatrix}$.

Fact: The supnorm $\|f\|_{\infty} = \sup_{x \in \mathbf{X}} |f(x)|$ is a norm on $C_{h}(X)$. And we always assume Cb(X) with metric $d_{\infty}(f,g) = \|f - g\|_{\infty}$ given by the suprorm. Similar to (C[a,b], do), we have $\frac{Prop}{(L(X), dos)} \Rightarrow complete (fa any metric spece (X, d))$ Ef= let {fn} be a Cauchy seq. in (GUX), dos) Then YE>O, Ino 20 st. $\|f_m - f_n\|_{\infty} < \frac{\varepsilon}{4}, \quad \forall m, n \ge n_0.$ In particular, YXEX, $(\bigstar)_1 |f_m(x) - f_n(x)| \leq ||f_m - f_n||_{\infty} < \frac{\varepsilon}{7}, \forall m, n \geq n_0$ \Rightarrow {fn(x)} is a Cauchy seq. in IR. By completeness of IR (not X), ling frix) exists and, in general, depends on x. Let denote it by $f(x) = \lim_{n \to \infty} f_n(x) \quad \forall x \in \mathbb{X},$ This gives a function f on X.

Clavin 1 fis bounded. $Pf : Letting M \rightarrow \omega$ in $(*)_1$, we have $Y \in > 0$, and $Y \neq \in \mathbb{Z}$, $(\pounds)_2$ $\left| f(x) - f_n(x) \right| \leq \frac{\varepsilon}{4}$, $\forall n \ge n_0$ In particular, $|f(x) - f_n(x)| \leq \frac{\varepsilon}{4}$, $\forall \varepsilon > 0$, $\forall x \in \mathbb{X}$. $\Rightarrow \forall x \in \mathbb{X}, |f(x)| \leq \frac{\varepsilon}{4} + |f_{n_0}(x)| \leq \frac{\varepsilon}{4} + M_0$ where Mo is a bound for the. -- f is bounded. Claim 2 - f is continuous Pf: fno to => Y x0 EX & YE>0, F5>0 s.t. $\left| f_{n_0}(x) - f_{n_0}(x_0) \right| < \frac{\varepsilon}{4}$ $\forall d(x, x_0) < \delta$. Then together with (*)2, $|f(x) - f(x_0)| \leq |f(x) - f_{n_0}(x)| + |f_{n_0}(x_0) - f_{n_0}(x_0)| + |f_{n_0}(x_0) - f(x_0)|$ $\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} < \varepsilon, \quad \forall d(x, x_0) < \delta.$ - fiscts at xo. Since xoEX is arbitrary, fis do on X. $(\underline{laus l 2} =) f \in C_b(X).$ Finally, by $(*)_2$, $\sup_{x \in x} |f(x) - f_n(x)| \leq \frac{\varepsilon}{4}$, $\forall n \geq n$

Clearly,
$$\{x^n\}_{n=0}^{\infty}$$
 is a linearly indep. subset.
 $\Rightarrow C_b(\mathbf{x}) = C[0,1]$ is of infinite dimensional.

(iii)
$$G_{h}(X)$$
 (ould be of failte chinension:
eg: X=1p,..., pn); faile set with cliente metric
Then $X \rightarrow R^{m}_{U}$ is a linear bijection.
 $f \mapsto (f(p), ..., f(p_{n}))$

However, in some cases, it is still precible to define a
metrix on
$$C(\mathbb{X})$$
.
 $eg \quad \mathbb{X} = \mathbb{R}^{m}$, $\overline{B}_{n}(0) = 4 \times e\mathbb{R}^{m}$: $|X| \le n \le 1$, $\forall n = 1, 2.3$, ...
 $\forall f \in C(\mathbb{R}^{m})$, $dofine$
 $d(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{115 - 911_{cm}}{1 + 115 - 911_{cm}, \overline{B}_{n}(0)}$
where $\| e \|_{60, \overline{B}_{n}(0)}$ is the supmoun on the closed ball $\overline{B}_{n}(0)$.
Then d is a complete metric on $C(\mathbb{R}^{n})$. $(E_{X}!)$

(V) $C_b(\mathbf{X})$ may not have Bolzano - Weierstrass property. Recall:

Hence closed precompact => compact. The other disection: "Compact => closed precompact" is trivial. #

eg: A function f defined on a subset
$$\overline{G}$$
 of \mathbb{R}^n (non-empty
gen & bound G) is called Hislder containons
if $\exists \alpha \in (0, 1)$ such that
 $(+) |f(x) - f(y)| \leq \lfloor |x - y|^{\alpha}, \forall x, y \in \overline{G},$
for some constant L .
The number α is called the Hölder exponent.
The function is called Lipschitz containons if $(+)$ holds
for $\alpha = 1$.
For a fixed $\alpha \in (0, 1] \times L > 0$, the family
 $C = \{f \in (|\overline{G}| : f Hölder/lip. with exponent \alpha and $L > 0\}$
is an equicantinuous family.
 $Ef = \forall \geq 0$, let $\delta > 0$ such that $L\delta^{\alpha} < \varepsilon$.
Then $\forall f \in \mathbb{C}, \forall x, y \in \mathbb{Z}$ with $|x - y| < \delta$.
 $|f(x) - f(y)| \leq L |x - y|^{\alpha} < L\delta^{\alpha} < \varepsilon$.$

Prop4.1: let & be a subset ((G) where G is a nonempty convex in IR" (with G open & bounded). Suppose that each function in C is differentiable and there is a <u>uniform bound</u> <u>on their partial derivatives</u>. Then C is equicational. ie. C = } f ∈ C(G): f differentiable, || = Stell & ≤ M, Vi} is equicationnes provided <u>G</u> 5 convex. (⁵ Sa some M).