Final Step for special case: G is $C^{1}(B_{\frac{r}{2}}(0))$ furthermore, if F is C^{k} (k=1), then G is C^{k} . Pf of final step : By assumption, DF is cartain acres and invertible on Br(0). Linear Algebra \Rightarrow (DF)¹ is orthinknes. Therefore, by Step 3 (and step 2) $DG(y) = (DF)^{1}(G(y))$ is continuous. Itemce G is C^{1} .

The fact that F is C^k (k=1) => G is C^k is by differentiating the identity DG(y)=(DF) (G(y)) and using induction. X

Let
$$W = DF(x_0)(B_{\underline{r}}(0)) + y_0$$

 $V = \widehat{G}(B_{\underline{r}}(0)) + x_0$, (then $V \subset U \ge x_0 \in V$)
and $G : W \to V$ by
 $G(y) = \widehat{G}((DF)(x_0)(y-y_0)) + x_0$, $Hy \in W$.
Clearly G maps W bijective onto V .
Since $F(x) = (DF)(x_0)[F(x+x_0)-y_0]$,

we have $F(X+X_0) = (DF)(x_0) \stackrel{\sim}{\leftarrow} (X) + y_0$, $\forall X \in B_{+0}$ $\Rightarrow F(X) = (DF)(x_0) \stackrel{\sim}{\leftarrow} (X-X_0) + y_0$, $X \in V$

Hence
$$\forall y \in W$$

 $F(G(y)) = (DF)(x_0) \widetilde{F}(G(y) - x_0) + y_0$
 $= y_0 + (DF)(x_0) \widetilde{F} \left[\widetilde{G} ((DF)(x_0)(y - y_0)) \right]$ (by defauition)
 $= y_0 + (DF)(x_0) (DF)(x_0)(y - y_0))$ (since $\widetilde{F} \circ \widetilde{G} = I$)
 $= y_0 + y - y_0 = y_0$

... G is the local inverse of F

The remaining facts that $F \in C^k(k \ge 1) \Rightarrow G \in C^k$ is clear from the definition of G, and the results on $G(z \in F)$ in the special Case.

Def: A C^k-map
$$F: V \rightarrow W$$
 (V, W open in \mathbb{R}^{n}) is a
C^k-diffeomophism of F exists and is also C^k.

Note: (i) The IFT can be rephased as:
If F: J^{CRⁿ} → IRⁿ ∈ C^k and DF is nonvingular
at a point xo ∈ D, then F in a C^k-diffeomophism
between some nodes V and W of xo & F(xo) respectively.
(ii) If F: V > W is a C^k-diffeomophisms then
V function 9: W > R, there corresponds a function
Y = 9°F: V > R.
Conversely, V function Y: V > R. there corresponds a function

$$q = 4°F' = W - > R.$$

Maccover, $q = C^k = 4 = C^k$.
Thus every C^k-diffeomophism Gives rise to a

"local C^k-change of conditates".

Thm35 (Implicit Function Theorem)
Let U be an open set in
$$\mathbb{R}^{n} \times \mathbb{R}^{m}$$

 $F: U \rightarrow \mathbb{R}^{m}$ is a C¹-map.
Suppre that $(x_{0}, y_{0}) \in U$ satisfies $F(x_{0}, y_{0})=0$ and
 $\underline{D}_{y}F(x_{0}, y_{0}) \in U$ satisfies $F(x_{0}, y_{0})=0$ and
 $\underline{D}_{y}F(x_{0}, y_{0}) \in U$ satisfies $\overline{F(x_{0}, y_{0})=0}$ and
(1) \exists an open set of the fam $V_{1} \times V_{2} \subset U$ cataining
 (x_{0}, y_{0}) and a C¹-map
 $\varphi: V_{1}^{c} \longrightarrow V_{2}^{c}$ with $\varphi(x_{0})=y_{0}$
such that $F(x, \varphi(x))=0$, $\forall x \in V_{1}$.
(2) $\varphi: V_{1} \rightarrow V_{2} \in C^{k}$ when F is C^{k} , $1 \leq k \leq \infty$.
(3) Maltiver, assume further that DF_{2} is invertible in $V_{1} \times V_{2}$.
Then, $V_{1} \rightarrow V_{2}$ is another C¹-map satisfying
 $F(x, Y(x))=0$, we have $Y \equiv \varphi$.

Note: If $F = \begin{pmatrix} F_1(x_1, \dots, x_n, y_1, \dots, y_m) \\ \vdots \\ F_m(x_1, \dots, x_n, y_1, \dots, y_m) \end{pmatrix}$ then

$$D_{y}F = \begin{pmatrix} \frac{\partial F_{i}}{\partial y_{i}} & \frac{\partial F_{i}}{\partial y_{i}} \\ \frac{\partial F_{m}}{\partial y_{i}} & \frac{\partial F_{m}}{\partial y_{m}} \end{pmatrix}$$

à man « can le regarded as a Linear transfauetiu, from IR^M to IR^M

In general, for a map F such that DF (xo, yo) thas <u>rank m</u>, then one can rearrange the independent variables to make the mxm submatrix corresponding to the <u>last m columns</u> of the Jocabian matrix <u>insertible</u>, i.e. in the situation of the theorem.

 $\frac{PS}{PS} \xrightarrow{\text{of Implicit Function Theorem}} (\text{Using Inverse Function Theorem})$ $\frac{PS}{PS} \xrightarrow{\text{of Implicit Function Theorem}} (X, Y) \xrightarrow{\text{of R}^{M} \times \mathbb{R}^{M}} \longrightarrow (\mathbb{X}, \mathbb{R}^{M} \times \mathbb{R}^{M})$ $(X, Y) \xrightarrow{\text{of R}^{M} \times \mathbb{R}^{M}} (X, F(X, Y))$ $\text{where } X = \begin{pmatrix} X_{1} \\ X_{N} \end{pmatrix} \in \mathbb{R}^{N}, \ Y = \begin{pmatrix} Y_{1} \\ Y_{M} \end{pmatrix} \in \mathbb{R}^{M}.$

Then
$$\overline{\Phi}(x_{0}, y_{0}) = (x_{0}, 0)$$
.
Charly $\overline{\Phi}$ is C^{k} if F is C^{k} .
And
 $\overline{\Phi} = \begin{pmatrix} x_{1} \\ \vdots \\ F_{1}(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}) \\ \vdots \\ F_{m}(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}) \end{pmatrix}$

$$= \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{1}{2} \int_{\mathbb{T}}$$

$$\therefore \int X = \Psi_1(x,z)$$

$$\neq = F(\Psi_1(x,z), \Psi_2(x,z))$$

$$\Rightarrow z = F(X, \Psi_2(x,z))$$

In particular, we can take $z=0 \neq \text{fluxe}$ $F(x, \overline{\Psi}_2(x,0))=0, \forall x=\overline{\Psi}_1(x,0)\in V_1.$ $\therefore \varphi = V_1 \rightarrow V_2 = x \mapsto \overline{\Psi}_2(x,0)$ is the required map $\text{St.} \quad \{ \begin{array}{l} \varphi(x_0) = \overline{\Psi}_2(x_0,0) = \Psi_0, \\ F(x,\varphi(x)) = 0 \end{array}$ and is C^k when $FiaC^k$. We're proved (1) e(2).

For (3), Dy F is investible in
$$V_1 \times V_2$$

$$\Rightarrow \int_0^1 D_2 F(x, y_1 + t(y_2 - y_1)) dt \quad is rousingular$$

$$fa(x, y_1) \approx (x, y_2) \in V_1 \times V_2. \quad (May assume V_2 is a bdl)$$
Now if $Y = V_1 \rightarrow V_2$ is another $C'-map$ s.t.
 $F(x, Y(x)) = 0$,

then
$$0 = F(x, \psi(x)) - F(x, \varphi(x))$$

$$= \left(\int_{0}^{1} D_{y}F(x, \varphi(x) + t(\psi(x) - \varphi(x))) dt \right) (\psi(x) - \varphi(x))$$

$$\int_{0}^{1} D_{y}F(x, \varphi(x) + t(\psi(x) - \varphi(x))) dt \quad \text{nonsingular} \Rightarrow$$

$$t(x) = \varphi(x), \quad \forall \ x \in V_{1}. \quad \bigstar$$

Concrete examples are omitted since it should be given in advanced calculus already. A few explicit examples are given in Prof Chou's notes.