3.5 Appendix Completion of ^a Metric Space

$$
\begin{array}{ll}\n\text{Def}: A \text{ matrices } spac(\mathbb{X}, d) \text{ is said to be isomatically}\n\\ \n\text{unkedded} & \text{in matrix } spac(\mathcal{T}, \rho) \text{ if}\n\\ \n\exists a \text{ mapping } \Phi: \mathbb{X} \rightarrow \mathbb{Y} \text{ s.t.}\n\\ \n\text{d}(x,y) = \rho(\Phi(x), \Phi(y)).\n\end{array}
$$

Notes: (1)
$$
\overline{\Phi}
$$
 is called an isometric embedding
from (\overline{x}, d) into $(\overline{x}, \overline{p})$. And something
called a matrix programming map.

(i')
$$
\Phi
$$
 must be one-to-one and continuous.

Def: Let
$$
(\mathbf{X}, d)
$$
 and (\mathbf{Y}, β) be metric spaces.

\nWe call (\mathbf{Y}, β) a completon of (\mathbf{X}, d) .

\nif $(1)(\mathbf{Y}, \beta)$ is completo.

\n(2) \exists is imetric embedding.

\n $(\mathbf{X}, d) \rightarrow (\mathbf{Y}, \beta)$

\nsuch that the closure $\overline{\Phi}(\mathbf{X}) = \mathbf{Y}$.

Log : $(\overline{Y}, \rho) = (\mathbb{R}, \text{standard})$, $\overline{X} = \mathbb{Q} \subset \mathbb{R}$	
$(\overline{X}, d) = (\mathbb{Q}, \text{ induced media})$	
Then	$(\mathbb{R}, \text{shared}) \geq \text{complete}$;
$\cdot \overline{\Phi}: (\mathbb{Q}, \text{ induced white}) \rightarrow (\mathbb{R}, \text{standard})$	
$\cdot \overline{\Phi}: (\mathbb{Q}, \text{ induced white}) \rightarrow (\mathbb{R}, \text{standard})$	
$\cdot \overline{\Phi}(\mathbb{Q}) = \overline{\mathbb{Q}} = \mathbb{R}$ ($\mathbb{Q} \geq \text{dense in } \mathbb{R}$)	
Self: $\overline{f} \cup \overline{f} \cup$	

53.2 TheContraction Mapping Principle

Ref	(1) Let	(X ,d) be a metric span. A map
$T: (X,d) \rightarrow (X,d)$ is called a contradiction		
$if \exists$ constant $\gamma \in (0,1)$, such that		
$d(Tx, Ty) \leq \gamma d(x,y)$, $\forall x,y \in \overline{X}$.		
(2) A point $\gamma \in X$ is called a fixed point of T		
$\forall x = x$. (Multiply what γ instead of T(x))		

E3 Contraction Mapping Principle Every contraction in ^a complete metric space admit ^a unique fixedpoint This is also called the BanachFixedPointThan

Pf: Uniqueness: Suppae X 2 y are fixed pts. of T. Then $d(x,y) = d(\tau x, \tau y)$ (x,y are fixed by τ) $\leq \gamma$ d(x, y) for some $\gamma \in (0, 1)$
 $\cap \Rightarrow \gamma = u$ (T cartraction) $\Rightarrow d(x,y) = 0 \Rightarrow x=y$.

$$
\frac{Fy \times Fuu}{2efine} \times x_{n} \times \sum_{n=1}^{\infty} by \quad x_{n} = Tx_{n-1}, \quad f_{n} = y_{n-1}
$$
\n
$$
\frac{Fy \times Fuu}{2efine} \times x_{n} \times \sum_{n=1}^{\infty} Fx_{n-1} = T(Tx_{n-2}) = T^{2}x_{n-2}
$$
\n
$$
= \cdots = T^{n}x_{0}.
$$

For any
$$
n \ge N
$$
 ,
\n
$$
d(x_n, x_N) = d(T^k x_0, T^N x_0) = d(T^{(n-N)H} x_0, T^N x_0)
$$
\n
$$
= d(T(T^{(n-N)+N-1} x_0), T(T^{N-1} x_0))
$$
\n
$$
\le \gamma d(T^{(n-N)+N-1} x_0, T^{N-1} x_0)
$$

(where $\gamma \in (0,1)$ is the constant $s.t.$ $d(7x,7y) \leq r d(x,y)$, $\forall x y \not\in f$) \leq

$$
\leq \gamma^{N} d(\tau^{(n-N)} \times_{o} x_{o})
$$
\n
$$
\leq \gamma^{N} \left[d(\tau^{(n-N)} \times_{o} \tau^{(n-N)-1} \times_{o}) + d(\tau^{(n-N)-1} \times_{o} \tau^{(n-N)-2} \times_{o}) + \cdots + d(\tau x_{o}, x_{o}) \right]
$$

$$
\leq \gamma^{\mathsf{N}} \left[d(\tau x_0, x_0) + \gamma d(\tau x_0, x_0) + \cdots + \gamma^{(n-\mathsf{N})-2} d(\tau x_0, x_0) + \gamma^{(n-\mathsf{N})-1} d(\tau x_0, x_0) \right]
$$

$$
= \gamma^{\mathsf{N}} \left[1 + \gamma + \dots + \gamma^{(n-\mathsf{N})-1} \right] d(T_{X_0} X_0)
$$

$$
< \frac{\gamma^{\mathsf{N}}}{1-\gamma} d(T_{X_0} X_0)
$$

$$
Tlenefes, \forall \epsilon > 0, \forall N > 0 \text{ is chosen s.t.}
$$
\n
$$
\frac{\gamma^N}{1-\gamma} d(Tx_0x_0) \leq \frac{\epsilon}{2}
$$

We have
$$
\forall n, m \ge N
$$

\n
$$
d(x_{n},x_{m}) \leq d(x_{n},x_{N}) + d(x_{N},x_{m}) < \frac{c}{2} + \frac{c}{2} = \epsilon
$$
\n
$$
\therefore \{x_{n}\} \circ a \quad \text{Cauchy } \text{seg. } \tilde{u} \quad (\tilde{X},d).
$$
\nBy completeness of (\tilde{x},d) , $\exists \; x \in \tilde{X} \text{ sf. } x_{n} \to x$.

\nNote that a contraction \tilde{d} always containing (\tilde{x},d) we have

\n
$$
x = \lim_{n \to \infty} x_{n} = \lim_{n \to \infty} Tx_{n-1} = T \lim_{n \to \infty} x_{n-1} = Tx
$$
\n
$$
\therefore x \quad \tilde{u} \quad \alpha \quad \text{fixed point of } T \cdot \mathcal{X}
$$

$$
\underbrace{eg33}_{x \mapsto \frac{x}{2}} \quad T = (0,1] \rightarrow (0,1] \quad (\text{Cautrino} : 0,1 \text{ is not complete})
$$
\n
$$
x \mapsto \frac{x}{2}
$$
\n
$$
\text{Clearly } |Tx - Ty| = \frac{1}{2}|x-y| \quad (x=\frac{1}{2}<1)
$$
\n
$$
\therefore \quad T \text{ is a contraction.}
$$
\n
$$
\text{However, } \frac{1}{4} \times e(0,1) \text{ is a fixed point of } T
$$
\n
$$
\text{Then } \quad Tx = x \iff \frac{x}{2} = x \iff x = 0 \text{ (}0,1\text{]}
$$

 \therefore T thas no fixed paint on (0, 1]. This example shows that "completeness" is necessary in the

 \leq $\left(\frac{\mu}{\sqrt{2}}\right)\left(\frac{\mu}{\sqrt{2}}\right)$ $\left(\frac{\mu}{\sqrt{2}}\right)$.

 $Sine (f(z)|<12 f(z) ds$ an [0,1], $\gamma = \sup_{[0,1]} |\zeta'(z)| \in [0,1).$ If $r = 0$, then $f = c$ on $[0, 1] \Rightarrow f(c) = c$. If $x+0$, then $X\in (0,1)$ & $1\frac{1}{2}(x)-f(y)\leq \frac{1}{2}(x-y)$ \forall X, \forall E[O; I] => f is a contraction on the couplete metric Space (IO, 1], standard). By contraction mapping principle, f flas a fixed punt: