Pef: A matric space
$$(X, d)$$
 is said to be isometrically
embedded in metric space (\overline{Y}, p) if
 $\exists a$ mapping $\overline{\Phi} : X \Rightarrow \overline{Y} = S + I$,
 $d(X, Y) = p(\overline{\Phi}(X), \overline{\Phi}(Y))$.

Def: Let
$$(X,d)$$
 and $(\overline{Y}, \overline{P})$ be metric spaces.
We call $(\overline{Y}, \overline{p})$ a completion of (X,d)
 $\overrightarrow{4}(1)(\overline{Y}, \overline{p})$ is complete.
(2) \exists isometric embedding
 $\overline{\Phi}: (X,d) \rightarrow (\overline{Y}, \overline{p})$
such that the closure $\overline{\Phi}(\overline{x}) = \overline{Y}$.

\$3,2 The Contraction Mapping Principle

 $\begin{array}{l} Pf: \underline{Uniqueness}: & Suppose X & y are fixed pts. of T.\\ Then <math>d(x,y) = d(Tx, Ty) \quad (x,y \ are fixed by T) \\ \leq & d(x,y) \quad fer \ some \quad & & & & \\ \Rightarrow \quad & & & \\ d(x,y) = & & & \\ \end{array}$

Existence: Let
$$x_0 \in X$$
.
Define $\{x_n\}_{n=1}^{\infty}$ by $x_n = Tx_{n-1}$, $f_{n}n=1,3...$
Then $x_n = Tx_{n-1} = T(Tx_{n-2}) = T^2x_{n-2}$
 $= ---- = T^n x_0$.

For any
$$n \ge N$$
,

$$d(x_n, x_N) = d(T_{x_0}, T_{x_0}^N) = d(T_{x_0}^{(n-N)+N}, T_{x_0}^N)$$

$$= d(T(T(T_{x_0}^{(n-N)+N-1}, T(T_{x_0}^{N-1})))$$

$$\leq \gamma d(T(T_{x_0}^{(n-N)+N-1}, T(T_{x_0}^{N-1}))$$

(where $Y \in (0,1)$ is the constant s.t. $d(Tx, Ty) \leq rd(x, y), \forall x, y \in \mathbb{Z}$) $\leq \dots$

$$\leq \gamma^{N} d(T^{(n-N)} x_{0}, x_{0})$$

$$\leq \gamma^{N} \left[d(T^{(n-N)} x_{0}, T^{(n-N)-1} x_{0}) + d(T^{(n-N)-1} x_{0}, T^{(n-N)+2} x_{0}) + d(T^{(n-N)-1} x_{0}, T^{(n-N)+2} x_{0}) \right]$$

$$\leq \gamma^{N} \left[d(Tx_{o}, x_{o}) + rd(Tx_{o}, x_{o}) + \cdots + \gamma^{(n-N)-2} d(Tx_{o}, x_{o}) + \gamma^{(n-N)-1} d(Tx_{o}, x_{o}) + \gamma^{(n-$$

$$= \gamma^{N} \left[1 + \gamma + \dots + \gamma^{(n-N)-1} \right] d(T_{X_{0}} X_{0})$$

$$< \frac{\gamma^{N}}{1-\gamma} d(T_{X_{0}} X_{0})$$

Therefore,
$$\forall \epsilon > 0$$
, if $N > 0$ is chosen s.t.
 $\frac{\chi N}{1-\chi} d(T \chi_0 \times 0) < \frac{\epsilon}{2}$

We have
$$\forall n, m \ge N$$
,
 $d(x_n, x_m) \le d(x_n, x_N) + d(x_N, x_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.
 $\therefore \{x_n\}$ is a Caucky seq. in (\mathbb{X}, d) .
By completeness of (x, d) , $\exists x \in \mathbb{X}$ s.t. $x_n \rightarrow x$.
Note that a contraction is always contained ($\exists x_n!$) we have
 $x = \lim_{n \ge \infty} x_n = \lim_{n \ge \infty} Tx_{n-1} = T \lim_{n \ge \infty} x_{n-1} = Tx$.
 $\therefore x$ is a fixed point of $T \cdot x$

eg 3.3

$$T: (0, I] \rightarrow (0, I]$$
 (Caution: $(0, I]$ is not complete)
 $x \mapsto \frac{x}{2}$.
Clearly $|Tx-Ty| = \frac{1}{2}|X-y|$ ($Y=\frac{1}{2}<1$)
 \therefore T is a contraction.
However, if $x \in (0, I]$ is a fixed point of T,
then $Tx=x \iff \frac{x}{2}=x \iff x=0 \notin (0, I]$,

- This example shows that "<u>completeness</u>" is necessary in the Contraction Mapping Principle.

eg2.4: S:
$$R \Rightarrow R$$
 (R is complete)
 $x \mapsto x - \log(ite^{x})$.
Then $\frac{dS}{dx} = 1 - \frac{e^{x}}{ite^{x}} = \frac{1}{ite^{x}} > 0$
 $\Rightarrow [Sx - Sy] = \left| \frac{ds}{dx}(c) \right| |x - y| < |x - y|$
(but there is no constant $x < 1$ such that
 $1Sx - Sy| \le r |x - y|$ (Ex!)
Since $-\log(ite^{x}) \ne 0 \forall x \in R$,
 $Sx \ne x \forall x \in R$ i.e. no fixed point
This example shows that $x < 1$ cannot replaced by $s \le 1$.
 $g_{3:5}$ Let $f: [0, 1] \Rightarrow [0, 1]$ continuously differentiable
with $1f(x)| < 1$ on $[0, 1]$. Then f has a fixed
point in $[0, 1]$.
Ef : By mean value thereau
 $\forall x, y \in [0, 1]$, $\exists z \in S_{0}, 1]$ s.t.
 $f(x) - f(y) = f(z)(x - y)$
 $\Rightarrow 1f(x) - f(y) \le (f(z)| 1x - y|$

 $\leq (\sup_{T_{0}, T_{1}} | f(z) |) | x-y |.$

Since $|f(z)| < 1 \otimes f'(z) ds$ on [0, 1], $\delta = \sup_{T0,T1} |f(z)| \in [0, 1)$. If $\tau = 0$, then f = c on $[0, 1] \Rightarrow f(c) = c$. If $\tau \neq 0$, then $\delta \in (0, 1) \otimes |f(x) - f(y)| \leq \delta |x-y|$ $\forall x, y \in [0, 1]$. $\Rightarrow f to a cartraction on the complete metric$ space (T0, 1], standard).By cartraction mapping principle, f thas afixed print *