Recall

Young's Inequality
For
$$a, b > 0$$
 and $p > 1$,
 $ab \le \frac{a^{p}}{p} + \frac{b^{g}}{g}$, where g is given by
 $ab \le \frac{a^{p}}{p} + \frac{b^{g}}{g}$, $\frac{b^{q}}{p} + \frac{b^{q}}{g} = 1$
and "equality holds" $\iff a^{p} = b^{g}$.

Note:
$$g = \frac{P}{P-1} > 1$$
 is called the conjugate of P.
(Recall Pf: Study the minimum of
 $P(\alpha) = \frac{\alpha P}{P} + \frac{b^8}{8} - \alpha b$. (EX!))

Note: If
$$p=2$$
, it is the elementary inequality
2ab $\leq a^2 + b^2$.

Then
$$\sum_{a}^{b} [f(x)g(x)]dx \le \left(\int_{a}^{b} [f(x)]^{b}dx\right)^{\frac{1}{p}} \left(\int_{a}^{b} [g(x)]^{d}dx\right)^{\frac{1}{p}}$$

Then $\int_{a}^{b} [f(x)g(x)]dx \le \left(\int_{a}^{b} [f(x)]^{b}dx\right)^{\frac{1}{p}} \left(\int_{a}^{b} [g(x)]^{d}dx\right)^{\frac{1}{p}}$
where $2 = \frac{p}{p-r}$ the conjugate of p .
"Equality Evolds"
 \Rightarrow either (a) for $g = 0$ almost everywhere,
 c_{2} (b) \equiv constant $\lambda > 0$ s.t.
 $|g(x)|^{2} = \lambda |f(x)|^{2}$ almost everywhere.
 $(\Rightarrow \exists constants \lambda_{1}, \lambda_{2} \ge 0, not both zero, such that
 $\lambda_{1}|f(x)|^{2} = \lambda_{2}|g(x)|^{2} a.e.$)
 $Pf : Onitified$.
Note: If we denote $||f||_{p} = (\int_{a}^{b} |f(x)|^{2} dx)^{\frac{1}{p}}$. Then
the Hölder Ineguality can be written as
 $\int_{a}^{b} |f(x)g(x)|dx \le ||f||_{p} ||g||_{2}$.$

Note: Limiting cases
(Note: Riemann ättignalle)
(i)
$$p \ge 1$$
 ($\Longrightarrow q \Longrightarrow + \infty$)
 $\int_{a}^{b} H(x)g(x)|dx \le ||f||, ||g||_{\infty}$
(ii) $p \ge +\infty (\Longrightarrow q \ge 1)$
 $\int_{a}^{b} |f(x)g(x)|dx \le ||f||_{\infty} ||g||,$
Thus 2.(1 (Markowski's Inequality))
 $V = f,g \in R[a,b], and p \ge 1,$
 $||f+g||_{p} \le ||f||_{p} + ||g||_{p}.$

(other conditions are trivial)

eg let
$$P = \{f \in C[a,b] : f(x) = p(x) \text{ onta,b] for some polynomial } p(x) \}$$
.
Then P is not complete (in do-metric):
 $f_n(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \in P$
but $f_n(x) \rightarrow e^{\chi}$ uniformly (in do-metric)
 $\chi = e^{\chi} \notin P$.