992.13
$$
X = C[a,b]
$$
 with $d_{10}(f,g) = 115-g11_{\infty} = \frac{24}{\pi \lceil a,b \rceil}$

\nLet $E = \{f \in C[a,b]: f(x)>0, \forall x \in [a,b] \} \subset X$

\nLet $E = \{f \in C[a,b]: f(x)>0, \forall x \in [a,b] \} \subset X$

\nLet $E = \{f \in C[a,b]: f(x)>0, \forall x \in [a,b]:$

\nTherefore $\exists w > 0$ $\forall x \in [a,b]:$

\nConsider $B_{\frac{m}{2}}^{0}(f) = \{g \in C[a,b]: d_{\infty}(g,f) < \frac{m}{2}\}$

\nLet $B_{\frac{m}{2}}^{0}(f) = \{g \in C[a,b]: d_{\infty}(g,f) < \frac{m}{2}\}$

\nLet $B_{\frac{m}{2}}^{0}(f) = \{g \in C[a,b]: d_{\infty}(g,f) < \frac{m}{2}\}$

\nLet $B_{\frac{m}{2}}^{0}(f) = \{g \in C[a,b]: d_{\infty}(g,f) < \frac{m}{2}\}$

\nLet $B_{\frac{m}{2}}^{0}(f) = \{g \in \mathbb{R} \} \subset X$

\nLet $B_{\frac{m}{2}}^{0}(f) < \frac{m}{2} \neq 0$

\nLet $B_{\frac{m$

 $\overline{}$

And
$$
\{f \in C[a,b]: = f(x) \ge d, \forall x \in [a,b] \}
$$

\n $\{f \in C[a,b]: = f(x) \le d, \forall x \in [a,b] \}$
\n $\{f \in C[a,b]: = f(x) \le d, \forall x \in [a,b] \}$
\n $\{x \in [a,b]: = f(x) \le d, \forall x \in [a,b] \}$
\n $\{x \in [a,b]: = f(x) \le d, \forall x \in [a,b] \}$

 97.14 S Let $X \neq \emptyset$ and $d = \text{divide write } mX$. Then Y subset $E \subset \mathbb{Z}$, $B_{\frac{1}{2}}(x) = \{x\} \subset E$, $\forall x \in E$.
 \vdots E is open. E is open. Therefore \log subset E of (X) disnete) is open z from a any subset \mp of $(\mathcal{Z}$, disnete) is closed. Together, any subset E of (E) disnete) is both open and closed In particular, any $\{x\} \subset (\mathbb{X})$ disnete) is both open and closed

Prop 26	Let: $(3, d)$ be a matrix space. A sequence
$\{x_n\}$ converges to x if and only if	
\forall open set G containing x , $\exists n_0$ such that	
$x_n \in G$, \forall $n \ge n_0$	

$$
\begin{array}{lll}\n\mathbb{E}\{\div(\Rightarrow) & \text{let } G \text{ open } \& x \in G \\
& \Rightarrow \exists \& z > 0 \text{ s.t. } B_{\&}^{(x)} < G \\
& \text{As } x_{n} \Rightarrow x, & \text{for this } \& > 0, \exists n_{0} \text{ s.t.} \\
& d(x_{n,x}) < \& x \land n \ge n_{0} \\
& & \Rightarrow & x_{n} \in B_{\&}^{(x)} < G, \forall n \ge n_{0} \\
(\Leftarrow) & \forall \& z > 0, \quad B_{\leq}(x) \text{ is an open set containing } x \\
\text{Huefree } \exists n_{0} \text{ s.t. } x_{n} \in B_{\leq}(x), \forall n \ge n_{0} \\
& & \Rightarrow & d(x_{n,x}) < \& y \land n \ge n_{0} \\
\end{array}
$$

Prop27 let
$$
(\mathbb{X},d)
$$
 be a matrix space. Then a set $AC\underline{\mathbb{X}}$

\nis closed, \mathbb{Y} and only \mathbb{Y} whenever $\{x_{n}\} \subseteq A$

\nand $x_{n}\Rightarrow x$ as $n\Rightarrow \infty$ implies that $x \in A$.

 $\exists f: (\Rightarrow)$ Suppose not. Then \times of A Le XE $X \wedge A$ which is open (as A closed) \Rightarrow = E=0, $\beta_{s}(x)$ C X \ A. On the other acand $x_n \rightarrow x$, $\exists n_0 s.t. d(x_n x) \in \forall n \ge n_0$ \Rightarrow $x_0 \in B_{\epsilon}(x) \subset \mathbb{X} \setminus A$ \Rightarrow $x_{n} \notin A$ contradiction $\%$ (\Leftarrow) Suppone <u>not</u>. Then A is not closed. \Leftrightarrow $X \setminus A$ is not open $\exists x \in \mathbb{X} \setminus A$ o.t. $B_{\mathcal{E}}(x) \notin \mathbb{X} \setminus A$, $\forall \varepsilon > 0$. In particular, $B_{\frac{1}{n}}(x) \cap A \neq \emptyset$, $\forall n=1,2,\cdots$ Pick Xa E B1(X) NA fa each n Then $\{x_{a}\}_c A$ a $d(x_{a},x) \leq \frac{1}{n}$, $\forall a$ \Rightarrow \times \rightarrow X as n \rightarrow 00. Contradicting the assumption (as $x \in X \setminus A$)

Prop 2.8	Left $f:(\mathbb{X},d) \rightarrow (\mathbb{Y},\rho)$ be a mapping between
(a) f is continuous at x	
\Leftrightarrow \forall open set G (in \mathbb{Y}) containing $f(x)$,	
$f'(G)$ contains $B_{\xi}(x)$ for some $\xi > 0$.	
(b) f is continuous in \mathbb{X}	
\Leftrightarrow \forall open set G in $\mathbb{Y},$ $f'(G) \circ$ open in \mathbb{X}	
\Leftrightarrow \forall open set G in $\mathbb{Y},$ $f'(G) \circ$ open in \mathbb{X}	

$$
Pf: (a) (\Rightarrow) Suppose not,\nthen \exists open set G in Fontaining $S(x)$
\n $S.f. f'(G)$ doesn't containing $B_{g}(x)$, $Y \ge 0$.
\n $i e. B_{g}(x) \cap [X \setminus f'(G)] \ne \emptyset$, $V \in > 0$.
\nIn particular $B_{g}(x) \cap [X \setminus f'(G)] \ne \emptyset$, Vn .
\n
\nFirst $X_{n} \in B_{g}(x) \cap [X \setminus f'(G)]$, $\forall n$.
\nThen $X_{n} \in B_{g}(x) \Rightarrow X_{n} \Rightarrow x \text{ as } n \ge 0$
\n $\downarrow X_{n} \in X \setminus f(G) \Rightarrow f(x_{n}) \notin G$, $\forall n$
$$

By Fapp2.6,
$$
5(x_{n}) +75(x)
$$
. Controducing the
\nasumption that 6 35. at x.
\n (6) 4220, $B_{\xi}(f(x)) \subset \Gamma$ is an open set containing
\n $-\frac{1}{3}(x)$. By assumption,
\n $f^{-1}(B_{\xi}(f(x))) \supseteq B_{\xi}(x)$ for sure 8>0
\n $i \in -f(y) \in B_{\xi}(f(x))$, $\forall y \in B_{\delta}(x)$
\n $\Rightarrow d(f(y), f(x)) < \epsilon$, $\forall d(y,x) < \delta$.
\n $\therefore f \circ d \circ d \cdot d \cdot x$.
\n(b) follows from (a). (Ex!) $\frac{1}{3}$
\n $\frac{1}{3}$ of the x.
\n $\Rightarrow \frac{1}{3}$ of the x
\n $\Rightarrow \frac{1}{3}$ of the y
\n $\Rightarrow \$

 $Eq.$ (i) let ACZ e $A \neq \emptyset$. $\sqrt{\dot{m}}$ R Since $\int_A (\kappa) = d(x, A)$ à th, $G_r = \{x \in \mathbb{Z} : d(x, A) < r\} = \overline{\rho}_A(B_r(o))$ $\overline{\mathcal{A}}$ open in $\overline{\mathbb{X}}$. \overline{C} ¹⁰ \overline{C} \overline{C}

Hence any closed set is a countable intersection of open sets.

 $\Box f$: It is clear that $A \subset \bigcap_{n=1}^{\infty} G_{\frac{1}{n}}$ as $ACG_{\frac{1}{n}}$, $\forall n$. Let $x \in \bigcap_{n=1}^{\infty} G_{\frac{1}{n}}$ then $x \in G_{\frac{1}{n}}$, $\forall n$ $\Rightarrow d(x, A) < \frac{1}{n}$, th \Rightarrow $\exists x_{n} \in A$ s.t. $d(x, x_{n}) < \frac{1}{n}$, $\forall n$ Hence $\{x_n\}$ CA is a seg in A site $x_n \rightarrow x$, Since A is closed, we have $x \in A$. (Prop ?-7) $A = \bigcap_{n=1}^{\infty} G_{\frac{1}{n}}$ >

§2.4 Points in Metric Spaces

Left:	Let E be a set in a matrix space (X, d)
(1) A pair $x \in X$ (not nec. in E) is called a	
boundary point of E if Y open set $G \subset X$	
containing x , $G \cap E \neq \phi$ as $G \setminus E \neq \phi$	
(a) $(X \setminus E) \neq \phi$	
(b) The set of boundary points of E will be divided by	
BE and is called the boundary of E	
(c) The closure of E , denoted by E , is defined to be	
be $E = E \cup 3E$	

Note:
(i) In (1), if suffixs to check G of the form B _z (x) ξa all small $\epsilon > 0$, or even $\beta_{\pi}(x)$, $\forall n \ge 1$ (See the proof of Prop 2.9(a)) ξ (i)\n $\partial E = \partial(\Sigma \setminus E)$, $\forall E \subseteq \Sigma$. ξ $\Sigma \setminus E$

 $\mathcal{QG}: \quad \text{F}_{\alpha} \quad \text{B}_{r}(x) = \{y \in \mathbb{X} \text{ is } d(y,x) < r \} \quad \text{in} \left(\mathbb{R}^{n}, \text{standard}\right)$ $\partial B_r(x) = S_r(x) = \{y \in \mathbb{X} : d(y,x) = r\}$ & $B_r(x) = B_r(x) \cup 3B_r(x) = \{y \in \mathbb{Z} : d(y,x) \le r\}$

Further Notes (1) $\partial \emptyset = \emptyset$ (Ex!) (II) Y ECX, OE is a closed set. (iii) If E is closed, then $E=E$.

Pf ofcit, : Consider a seg fxn sc IE converging to SUME $\pi \in \mathbb{X}$. Then $\forall \, \epsilon >0$, $\forall n \in B_{\epsilon}(x)$ for $n \ge n_{o}$ (for some no) \Rightarrow $B_{\xi-\alpha(x_{n,k})}(x_n)$ $CB_{\xi}(x)$. $C - d(x_{n, x})$ $As Xn\in\partial E$, $1 \mathcal{B}_{g-d(x_n,x)}(x_n) \cap E \neq \phi$ $B_{\xi-d(x_n,x)}(x_n) \searrow E + \phi$ $\begin{pmatrix} 5\tilde{u}_1Q & 6\times0 \\ avbitravy \end{pmatrix} \times C \supseteq \overline{C}$ $\begin{cases} B_{\epsilon}(x) \cap E \neq \phi \\ B_{\epsilon}(x) \setminus E \neq \phi \end{cases}$ Therefore It is closed XX

Pf of (iii) : Only need to show that SECE if E is losed. Let $x \in \partial E$, then by definition $B_{\mu}(x)$ \wedge $E \neq \phi$ $\left(\wedge B_{\mu}(x) \wedge (x \wedge E) \neq \emptyset \right)$ \Rightarrow \exists $x_{\alpha} \in B_{\alpha}(x) \cap E$ $\Rightarrow d(x_1, x) < \frac{1}{n}, \forall n$ \therefore $X_{N} \rightarrow X$ Since E is closed, Prop $2.7 \Rightarrow x \in E$. $S_{\dot{u}x}$ a $x \in \partial \bar{E}$ is arbitrary, $\partial E \subset \bar{E}$.

Prop 29 Let $E \subset (\mathbb{Z},d)$. Then (a) $X \in \overline{E} \Leftrightarrow B_r(X) \cap E \neq \emptyset$, $\forall r>0$. (b) $A C B \Rightarrow \overline{A} C \overline{B}$ $\forall A, B C(\overline{X}, d)$ $(c) \overline{E}$ is closed $(d) \equiv N\{C: C=closed \times N, C\geq C\}$ (i.e. E is the smallest closed set containing Z)

 $\mathbb{P} f(a) \Longleftrightarrow \chi \in \overline{E} \implies x \in \mathbb{C} \quad \text{as} \quad x \in \partial E$ If XEE, then XE Bx(X) NE, Vr>0 $\Rightarrow B_{r}(x)$ \wedge \neq ϕ , \forall r>0. If $x\in\partial E$, then by definition of boundary point, V open set G containing x , $G \cap E \neq \varphi$ (& G) $E \neq \emptyset$) Sûce B(x) is open and XEB(x), Hrzo, $we have B_r(x)$ $nE \neq \emptyset$, $\forall r > 0$. (\Leftrightarrow) If $x \in E$, we are done. $(x \in \overline{E})$ If $x\notin E$, then for any open set G containing x, $x \in G \setminus G$. Hence $G \setminus E \neq \emptyset$. To show that $G \cap E \neq \emptyset$, we choose $r_0 > 0$ s.t. Br(x) c G (it is possible suice G is gren). Then by assumption, $B_{r_0}(x) \cap E \neq \emptyset$ and there $G \cap E\left(0, B_{r_0}(x) \cap E\right) = \emptyset$

 (b) Let $X \in A$. By part (a) , $B_r(x) \cap A \neq \emptyset$, \forall r > 0

Size
$$
A \subseteq B
$$
, $B_{r}(x) \cap B \neq \emptyset$, $\forall r > 0$

\nPart (q) again, $x \in B$.

\n $\therefore \overline{A} \subseteq B$. &

(C) Consider a seg { x_n } $c \overline{E}$ such that $x_n \rightarrow x$ $\int u$ same $x \in \mathbb{Z}$. We need to show that $x \in \overline{\in}$ $(\ell_{\text{top}}$ 27)^e Suppose not, then $X \notin \overline{\mathcal{E}}$. Part(a) => = ε_0 >0 such that B_{ε} (x) n E = φ For this $\epsilon_0>0$, I $n_0>0$ such that $x_0 \in B_{\epsilon_0}(x)$ $\forall n> n_0$ Then $B_{\varepsilon_0}(x) \cap E = \emptyset \Rightarrow x_n \in \partial E \setminus E$ for $n \ge n_0$. In particular $\{x_{n}s_{n=n_{0}}\}\$ is a seq. in TE and $x_4 \rightarrow x$. By Note (ii) above and Prop 2.7 , $x \in \partial \in C$ \in which is a contradiction.

(d) By (c), E is closed $2E$ $\therefore \quad \overline{E} \in \{ C : C = \text{closed set}, C \supset E \}$ => EDNC: C=clord set, CDES

Conversely, let C be a closed set a CDE.
Then by G) and (iii) of Further Notes above,

$$
\overline{E} \subset \overline{C} = C
$$

$$
\Rightarrow \overline{E} \subset \bigcap \{C: C = closed set, C \geq \frac{1}{2} \}
$$

265 =
$$
10^6
$$
 E be a subset of a metric space (\mathbb{Z}, d) .

\n(1) A pair x is called an interior point of \mathbb{E} .

\n 4^6 I an open set G s.t. $x \in G$ x $G \subset \mathbb{E}$.

\n(2) The set of all interior points of E is called the interior of E , denoted by E^o .

\n $\begin{aligned}\n \text{Notes: } & \text{if } \mathbf{E}^{\mathbf{0}} \text{ is open} \\ \text{if } & \mathbf{E}^{\mathbf{0}} = \mathbf{E} \setminus \partial \mathbf{E} \\ \text{if } & \mathbf{E}^{\mathbf{0}} = \mathbf{E} \setminus \overline{(\mathbf{X} \setminus \mathbf{E})} \\ \text{if } & \mathbf{E}^{\mathbf{0}} = \mathbf{X} \setminus (\overline{\mathbf{X} \setminus \mathbf{E}}) \\ \text{if } & \mathbf{E}^{\mathbf{0}} = \mathbf{U} \setminus \mathbf{G} : \mathbf{G} = \text{open} \times \mathbf{G} \subset \mathbf{E}\n \end{aligned}$ \n
--

 $\frac{\log 218}{5}$ $E = \frac{Q \wedge Q}{1}$ in $\left(\frac{R}{5} = \frac{Q}{1} \right)$ d(xy)=(x-y))
Then $E^{\circ} = \frac{Q}{5}$ $R = \frac{E}{5} = \frac{[Q, 1]}{5}$ $R = \frac{Z}{5}$

(1) $\frac{(\text{Gain})}{S} = \{ \xi \in \mathbb{X} : | \xi f(x) \leq 5 \}$ $\forall x \in [0, 1]$

$$
P_{1}^{2}: \text{Let } C' = \{ f \in \mathbb{Z} : |f(x)| < f(x) \leq 0 \} \text{ and } C' = \{ 1 \leq
$$

(2)
$$
\underline{\text{Gain}}
$$
 = $S^0 = \{ \{\in \mathbb{X} : |c| \leq x < 5, \forall x \in [0, 1] \}$