MATH3060 HW3 Due date: Oct 15, 2021 (at 12:00 noon)

1. (a) Show that $d(x,y) = |\frac{1}{x} - \frac{1}{y}|$ is a metric on $\mathbb{R}_{+} = \{x \in \mathbb{R} : x > 0\}$. (b) let (X, d) be a metric space. Show that $d_{1}(x,y) = \frac{d(x,y)}{(1+d(x,y))}$

is also a metric.

2. Let
$$\mathbb{X} = \mathcal{C}[a,b]$$
, $d_1(f,g) = \int_a^b |f-g|$, and $d_2(f,g) = \left(\int_a^b |f-g|^2\right)^{l_2}$
(for $f,g \in \mathbb{X}$).
(a) Is d_1 stronger than d_2 ?
(b) Is d_2 stronger than d_1 ?
(Hint: You may use Hölder's Inequality
 $\int_a^b |fg| \leq \left(\int_a^b |f|^p\right)^{l_p} \left(\int_a^b |g|^q\right)^{l_q}$ where $\frac{l}{p} + \frac{l}{q} = 1$

3. Let C'[a,b] = {f \in C[a,b]: f is continuous differentiable on Ta,b]}
lefine
$$\forall f, g \in C^{1}[a,b]$$

 $d(f,g) = ||f-g||_{bo} + ||f'-g'||_{as}$.
Show that d is a metric on C'[Ta,b]. Furthermore,
Is $f_{k}(x) = S_{b}^{k} \sin(ktx)dt$, $k=b$?...
a convergence sequence in (C'[O,I], d)?

(End)