Def: A sequence $\{X_n\}$ in a metite space (X,d) is said to be converge to $x \in X$ if $\lim_{n \to \infty} d(x_n, x) = 0$

Inthis case, we write no xu=x on xu->x in X.

Prop (Uniqueness of limit)

If kn > x & xn > y in a metric space, then x=y

(Pf: Same as in IR" by using (MI))

egs (i) Convergence in (\mathbb{R}^n, dz) is the usual convergence in Adv. Calculus. (ii) Convergence in $(Cta,bI, d\infty)$ is the runiform convergence of a seq. of functions in C(a,bI).

Def: Let d and p be 2 metrics défand on X.

- (1) We call p is stronger than d or d is weaker than p, if ∃ C>O st. d(x,y) ≤ C p(x,y), ∀x,y∈ X
- (2) They are equivalent if p is stronger and weaker than d. i.e. $\exists C_1, C_2 > 0$ s.t.

 $d(x,y) \leq C_1 p(x,y) \leq C_2 d(x,y)$ $\forall x,y \in X$. (or $c_1 d(x,y) \leq p(x,y) \leq c_2 d(x,y)$) Prop: (1) If p is stranger than d, then

d Xn's converges in (X,p) implies

d Xn's converges in (X,d), and have the same limit.

- (3) "equivalent" of notices defined above is an equivalent relation.

(Pf: Easey ex!)

$$\frac{ey}{d_{1}(x,y)} = \frac{2}{2} |x_{1}-y_{1}|$$

$$\frac{d_{2}(x,y)}{d_{\infty}(x,y)} = (\frac{2}{2} |x_{1}-y_{1}|^{2})^{1/2}$$

$$\frac{d_{\infty}(x,y)}{d_{\infty}(x,y)} = \max_{x \in [x_{1}-y_{1}]} |x_{1}-y_{1}|$$

Check:

(i) $d_2(x,y) \leq \operatorname{In} d_{\infty}(x,y) \leq \operatorname{In} d_{z}(x,y)$ (ii) $d_1(x,y) \leq \operatorname{n} d_{\infty}(x,y) \leq \operatorname{n} d_{z}(x,y)$

Therefore, d1, d2 x dos are equivalent metrics on 12°.

eg
$$X = C(a,b)$$
) $d_1(f,g) = \int_a^b |f-g|$
 $d_{\infty}(f,g) = \max_{[q,b]} |f-g|$

Then clearly

 $d_{(f,g)} \leq (b-a)d_{\infty}(f,g)$, $\forall f,g \in C[a,b]$

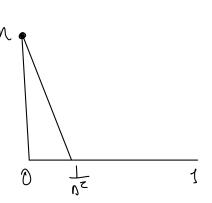
i. do is stronger than di.

However, it is impossible to find C>O st.

$$d_{\infty}(f,g) \leq c d_{1}(f,g)$$
, $\forall f,g \in C[a,b]$

Pf: Define
$$f_n$$
 on $ta,bJ = to,lJ$
 $f_n(x) = \begin{cases} -n^2x + n \\ 0 \end{cases}$, $x \in (n^2,lJ)$.

Then $d_{1}(f_{n}, 0) = \int_{0}^{1} |f_{n}| = \frac{1}{2n} \rightarrow 0 \quad \text{as } n \rightarrow \infty$ $d_{0}(f_{n}, 0) = \max_{\zeta_{0}, |\zeta|} |f_{n}(x)| = n \rightarrow \infty \quad \text{as } n \rightarrow \infty$



- $= d_{\omega}(f_{n,0}) \le C d_{1}(f_{n,0}) = \frac{C}{\ge n} , \forall n$ which is impossible.
- ⇒ d₁ à <u>not</u> stranger than des. Therefore d₁ 2 dos are <u>not</u> equivalent.

Def: let $f:(X,d) \to (\overline{Y},p)$ be a mapping between two neutric spaces, and $x \in X$. We call f is <u>continuous</u> at x if $f(x_n) \to f(x)$ in (\overline{Y},p) whenever $x_n \to x$ in (X,d). It is <u>continuous</u> on a set $E \subset X$ if it is continuous at every point of E.

Prop 7.2 let $f: (X,d) \rightarrow (Y,p)$ be a mapping between 2 metric spaces, and $X_0 \in X$. Then f is continuous at $X_0 \in X$. Then $f : X_0 \in X_0 \in X_0$ $f : X_0 \in X_0$ f

(Pf: Ex!)

 $\frac{\text{Prop 2.3}}{\text{g:}} : \text{Let } f: (X,d) \to (F,p) \text{ and }$ $g: (F,p) \to (Z,m)$

are mappings between metric spaces.

(a) If f is continuous at x = g is continuous at f(x), then $g \cdot f : (X, d) \rightarrow (Z, m)$ is continuous at x.

(b) If f à its in X and g à its. in P, then
gof is its in X.

(Pf = Easy)

Eg: let (X,d) be a metric space, ACX, $A\neq\emptyset$.

Define $P_A: X\rightarrow \mathbb{R}$ by $P_A(x)=\inf_{y\in A}d(y,x)$

(distance from x to the subset A)

 $\underline{\text{Clain}}: | p_A(x) - p_A(y) | \leq d(x,y) , \forall x,y \in X.$

Pfofclain For fixed xy E X.

By closur. of PA(y)

YE>O, JZEA S.t. PA(y)+E> d(z,y)

Hence, $P_A(x) \leq d(z,x) \leq d(x,y) + d(y,z)$

< d(x,y) + PA(y)+E

 \Rightarrow $p_{A(x)}-p_{A(y)} < d(x,y)+\epsilon$

Interchanging the roles of x & y

 $p_{A}(y) - p_{A}(x) < d(x,y) + \varepsilon$

Therefore IPA(x)-PA(y) < d(x,y)+E.

Sace E>O is arbitrary, I PA(x) - PA(y) (< d(x/y).)

By claim, $d(x_{n},x) > 0 \Rightarrow P_{A}(x_{n}) \Rightarrow P_{A}(x_{n})$: $P_{A} = (X, d) \Rightarrow R$ is its (In fact, P_{A} is "Lipschitz continuous") This example shows that there are "many" its functions on a methic space.

Notation: Usually, we use the following notations $d(x,F) = \inf \left\{ d(x,y) : y \in F \right\}$ $d(E,F) = \inf \left\{ d(x,y) : x \in E, y \in F \right\}$ In subsets $E \times F$.

\$2.3 Open and Closed Sets

Def: Let (X,d)=metric space

- A set GCX is called an open set if $\forall x \in G, \exists \underline{\varepsilon} > 0 \text{ s.t. } B_{\varepsilon}(x) = \{y : d(y, x) < \varepsilon\} \subset G.$ (The number $\varepsilon > 0$ may vary depending on x)
- · We also define the empty set & to be an open set.

Prop 2.4: Let (I,d) be a metric space. We have

- (a) X and \(\phi \) are open sets.
- (b) Arbitrary union of open sets is open: if Ga, at A, is a collection of open sets, then was Ga is an open set.
- (c) Finite intersection of opensets is open: if Gj; GN are opensets, then = Gi is an open set.

Pf: (a) Clear

(b) Let $x \in _{\alpha}G_{\alpha}G_{\alpha}$ $\Rightarrow x \in G_{\alpha} \quad fa \in _{\alpha}G_{\alpha}$ $\Rightarrow x \in G_{\alpha} \quad fa \in _{\alpha}G_{\alpha}$ $\Rightarrow x \in G_{\alpha} \quad fa \in _{\alpha}G_{\alpha}$ $\Rightarrow x \in G_{\alpha} \quad fa \in _{\alpha}G_{\alpha}$ (c) Let $x \in _{3=1}^{\infty}G_{3} \Rightarrow x \in G_{3}, \forall j=1,..., N$ $\Rightarrow \exists E_{j} > 0 \text{ s.t. } B_{e_{j}}(x) \subset G_{3}, \forall j=1,..., N$ Let $E = \min\{E_{1},...,E_{N}\} > 0$. Then $E_{\alpha}(x) \subset E_{\alpha}(x) \subset G_{3}, \forall g=1,..., N$

Let $E=\min\{E_1, E_1, E_2 > 0 \}$. Then $B_{\epsilon}(x) \subset B_{\epsilon_j}(x) \subset G_j, \forall j=1, E_1$ $\Rightarrow B_{\epsilon}(x) \subset A_j \subseteq A_j$

Def: let (X,d) be a metric space.

A set FCX is called a <u>closed set</u> if the complement XIF is an open set.

Prop 2.5: Let (X,d) be a metric space. We have

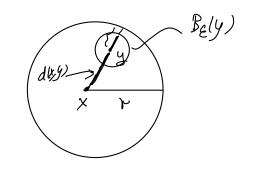
- (a) X and & are losed sets.
- (b) Arbitrary intersection of closed sets is closed: if Fx, d & A, is a collection of closed sets, then weak Fx is a closed set.
- (c) Finite runion of closed sets is closed: If Fij; Fin are dised sets, then if Fj is a closed set.

Note Prop 2.4 ≥ 2.5 ⇒ X & \$ are both open & closed.

 $\frac{\sqrt{292.10}}{\sqrt{10}}$ (1) Every metric ball $B_r(x) = \sqrt{10} + \sqrt{10} +$

Pf:
$$\forall y \in B_r(x)$$

Then $\varepsilon = r - d(x,y) > 0$
 $\forall \forall \xi \in B_{\varepsilon}(y)$
 $d(\xi,x) \leq d(\xi,y) + d(y,x)$
 $\leq \varepsilon + d(y,x) = r$

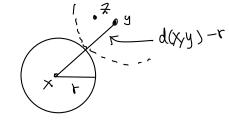


 $\Rightarrow \beta_{\varepsilon(y)} \subset \beta_{r(x)} \otimes$

(2) The set $E = \{y \in X = d(y, x) > r\}$ (for a fixed $x \in X$) is open and theme

 $X = \{y \in X : d(y, x) \in Y \}$ is closed.

Pf: $\forall y \in \mathcal{E}$ Then $\mathcal{E} = d(x,y) - r > 0$ $\forall z \in B_{\mathcal{E}}(y)$



d(z,x) > d(x,y) - d(z,y)> d(x,y) - (d(x,y) - r) = r

j. Bely) CE x

Note: We would write

 $\overline{B_r}(x) = \overline{B_r(x)} = \{y \in X : d(y,x) \leq r \}$

the closed ball of radius r centered at x.

(Confusing notation here, may not equal to the "closure" of Brix) in a general metric space.)

(3) Since $Br(X) \ge E = \{y \in X : d(x,y) > r\}$ are open, $Br(X) \cup E$ is open $\Rightarrow X \setminus (Br(X) \cup E) = \{y \in X : d(x,y) = r\}$ is closed.

In particular, $E=1y\in X: d(x,y)>0$ is open $\Rightarrow \{x\} = X\setminus E$ is closed (in any metric space). (Note: $\{x\}$ may not be open (unless $\exists E_0>0 \text{ s.t. } B_E(x)=1\times \}$)

eg2.11 $B_{1}(x)$, n=1,2,... One open sets

Claving $\bigcap_{n=1}^{\infty} B_{1}(x)=3\times3$ (closed, may not be open)

(even countable infinite intersection of open sets may not be open)

Pf of claim: $\forall y \in \mathcal{A} B_{1}(x) \Rightarrow y \in B_{1}(x) \Rightarrow y \in B_{1}(x) \Rightarrow y \in B_{1}(x)$

=> q(1/x) < 1/2 \ Au

 \Rightarrow dy,x>=0

=) y=X 💉