eq. z.1
$$(X = |R, d(X,y) = |X-y|)$$
 is a metric space.

eg. 2.2 let
$$X = \mathbb{R}^n$$
, $d_z(x,y) = \int x_{-i}^{2} (x_i - y_i)^2 (Euclidean methic)$
for $X = (x_1, ..., x_n) = y = (y_1, ..., y_n) \in \mathbb{R}^n$.
Then (\mathbb{R}^n, d_z) is a methic space. (Proof omitted, Ex!)

eq. 2.3 let
$$X = IR^{n}$$
, $d_{1}(x,y) = \sum_{x=1}^{n} |X_{x}-y_{x}|$
 $d_{\infty}(x,y) = \max_{x=1,\dots,n} |X_{x}-y_{x}|$
Then $(IR^{n}, d_{1}) \ge (IR^{n}, d_{\infty})$ are metric spaces.

Generalization of egs 2.2 e.2.3 to function spaces:

$$\underline{q2.4}$$
 let CEQ, b] = $l(real)$ continuous functions on EQ, b] l
 $\forall 5, g \in CEQ, b], define$
 $d_{60}(5, 9) = 115 - 911_{\infty} = \max l(5(x) - g(x)) = x \in [Q, b] l$
Then $(CEQ, b], d_{60}$ is a
metric space $(Ex!)$

Similarly, one can define
$$d_1(f,g) = \int_a^b |f(x) - g(x)| dx$$

It is also easy to verify that (CTa, b], di) is a metric space.

The natural generalization of the Euclidean metric to C[a,b] is $d_2(f,g) = \int S_a^b |f-g|^2$

$$(M_{1}) \ge (M_{2}) \text{ care clear fn } d_{2} (\text{because } f, g \text{ cts.}).$$
Note that $d_{2}(f,g) = ||f-g||_{2} (m \text{ in Fourier series})$

$$\Rightarrow d_{2} \text{ satisfies } (M_{3}) (E_{x}'. using Caudy-Schwarg to prove)$$

$$||f+g||_{2} \le ||f||_{2} + ||g||_{2}$$

$$\therefore (Clapbil, d_{2}) \text{ is a metric space.}$$

eg25 On $X = R[a,b] = l Riemann integrable functions on [a,b] <math>d_1$ d_1 is still defined $d_1(f,g) = S_a^{(i)} (f-g)$ However, (M1) is not satisfied: $d_1(f,g) = 0 \iff f = g$ almost everywhere $\Rightarrow f = g$ (at every point) d_1 is not a metric on R[a,b].

To overcome this, we consider
$$X = \frac{RTq,b}{2}$$

where "~" is an equivalent relation on RTq,b]
defined by $f \sim g \iff f = g$ almost everywhere
(check: "~" is an equivalent relation.)

Then elements of
$$R[q,b]$$
 can be represented as
 $TfJ \text{ or } f = \{g \in R[q,b] = g = f \text{ almost everywhere } \}$

Now define
$$\overline{d_1}$$
 on $\frac{R[q,b]}{d_1}$ by
 $\overline{d_1}(\overline{f},\overline{g}) = d_1(\overline{f},\overline{g})$

$$\underbrace{eqs}: ||x||_{2} = (\sum x_{c}^{z})^{l_{2}}, ||x||_{1} = \sum |x_{c}||$$

$$||x||_{\infty} = \max \langle |x_{1}|, \dots, |x_{n}| \rangle \quad \text{alle norms on } \mathbb{R}^{n}$$

$$||f||_{2} = (\sum_{a}^{b} |f|^{2})^{l_{2}}, \quad ||f||_{1} = \int_{a}^{b} |f|$$

$$||f||_{\infty} = \sup \langle H(x)| = x \in [a, b] \rangle \quad \text{are norms on } \mathbb{C}[a, b]$$

$$We'w \text{ seen }: \quad "norm!" \quad \text{induces} \quad "metric!"$$

eg
$$X = non - empty set$$

 $d(x,y) = \begin{cases} 1 & if x \neq y \\ 0 & if x = y \end{cases}$

 $(E_{x}: check this is a metric)$

• X not necessary a vector space, so d is not induced by noun.
• Even X is a vector space:

$$\begin{cases} 1 \\ 0 \end{cases} = d(dx, dy) = d(d(x, y)) = \begin{cases} |K| \\ 0 \end{cases}$$

Contradiction for $|X| \neq 1$ (for $X \neq y$)

Def: let
$$(X,d)$$
 be a metric space. Then for any non-empty
 $Y \subset X$, $(T, d|_{TXT})$ is called a metric subspace
of (X,d) .

Notes: (1) metric subspace à a metris space. (1) We simple write (F,d) fa (F, d | FxF) (11) A metric subspace of a normed space needs not be a normed space, unless it à a vecta subspace.