PG of Thm(1)	(κ stationary Lip condition)
Step 1: $\forall 2>0, \exists \alpha$ 2T-periodic Lip at function g set.	
II $f - g11_z < f_2$	
Ex: Hint: find a step function	argenspace
ex: Hint: find a step function	
approximating f as left.	
and then modify	g as right?
Step 2 (amplettan of the proof.	
Applying Thus of the function g in Step 1:	
AND	Q - S ₁
IN > 0	
IN > 0	
Thus	g - S ₁
Thus	g - S ₁
Thus	g - S ₁
Thus	g - S ₂
Thus	g - S ₂
Thus	g - S ₃
Thus	g - S ₄

$$
By Cor1.15,\n
$$
||f - \beta_{n}f||_{2} \le ||f - \beta_{n}g||_{2}
$$
\n
$$
\le ||f - \beta_{n}g||_{2}
$$
\n
$$
\le ||f - g||_{2} + ||g - \beta_{n}g||_{2} \quad (\overline{\epsilon}_{X}!)
$$
\n
$$
< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad (step 1).
$$
$$

Cor 1.17	(a) Suppose that $f_1 \leq f_2$ are 211-puiodic integrable functions
m ET, TJ with the same Fourier series. Then	
$f_1 = f_2$ almost everywhere.	
(i.e. $f_1 = f_2$ arnot a set of measure zero.)	
(b) Suppose that $f_1 \leq f_2$ are 2T-puiodic continuous functions	
(c) Suppose that $f_1 \leq f_2$ are 2T-puiodic continuous functions	
(d) m at the same Fourier series. Then, $f_1 = f_2$	
Recall: A set F is said to be of measure zero if	
$H \in \gt; 0$, f_1 countably many intervals $f_1 \leq f_2$, f_3 .	
$F \in \bigcup_{k=1}^{n} F_k$, $f_4 \in \bigcup_{k=1}^{n} F_k$	

Pf: (a) let
$$
f = f_1 - f_2
$$
, then $a_n(f) = b_n(f) = 0$ $\forall n \ge 0$
\n $\Rightarrow 5_n f = 0, \forall n \ge 0$
\nHence $\lim_{n \to \infty} ||f_n - f||_2 = 0 \Rightarrow ||f||_2 = 0$
\nBy theory of Rieuan integral, $f = 0$ almost everywhere.

(b) We still have
$$
||f||_2 = 0
$$
. As f_1, f_2 $dt \Rightarrow f^2 - t_2 \ge 0$
\n $\Rightarrow f^2 = 0 \cdot \cancel{x}$

Cor 1.18 (Parsenval's Identity)
\nFor every
$$
2\pi
$$
-periodic function f artegrable on ET, T]
\n $||f||_2^2 = 2\pi a_0^2 + T \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$
\nwhere a_0, a_4, b_1 are Fourier coefficients of f .

$$
\underline{Pf} = \underline{By} \quad \underline{def} \quad \underline{of} \quad \underline{a}, \underline{b}, \underline{n}
$$

$$
\begin{cases}\n\sqrt{\pi} a_{0} = \sqrt{5}, \frac{1}{\sqrt{2\pi}} \times_{2} \\
\sqrt{\pi} a_{1} = \sqrt{5}, \frac{1}{\sqrt{\pi}} (\text{sin} x)_{2} \\
\sqrt{\pi} b_{1} = \sqrt{5}, \frac{1}{\sqrt{\pi}} \text{sin} x \times_{2} \\
\sqrt{\pi} b_{1} = \sqrt{5}, \frac{1}{\sqrt{\pi}} \text{sin} x \times_{2} \text{sin} \frac{1}{\sqrt{5}} \\
\sqrt{\pi} b_{1} = \sqrt{5}, \frac{1}{\sqrt{5}} \times_{1} \text{sin} \frac{1}{\sqrt{5}} \\
\sqrt{\pi} \text{cos} \frac{1}{\sqrt{5}} \\
\sqrt{\pi
$$

How
$$
0 \xrightarrow{\text{t}} \frac{\text{t}}{\text{w.l.l}} \frac{1}{\text{v}} \left\{\frac{1}{5} - \frac{3}{5} \sqrt{1} \right\}^2
$$

\n $= \frac{2 \tilde{\text{u}}}{\text{v}^3 \text{v}} \left(\|\xi\|_2^2 - 2 \langle \xi, \xi \rangle_0 \xi \rangle_2 + \|\xi_0 f\|_2^2 \right)$

\n $= \frac{2 \tilde{\text{u}}}{\text{v}^3 \text{v}} \left(\|\xi\|_2^2 - \|\xi_0 f\|_2^2 \right)$

\n $\therefore \|\xi\|_2^2 = \frac{2 \tilde{\text{u}}}{\text{v}^3 \text{v}} \|\xi_0 f\|_2^2 = \frac{2 \tilde{\text{u}}}{\text{v}^3 \text{v}} \left[2 \pi \int_0^2 \pi \frac{1}{\text{t}} \frac{2}{\text{t}} (\theta_k^2 + \theta_k^2) \right]$

\n $\therefore \|\xi\|_2^2 = \frac{2 \tilde{\text{u}}}{\text{v}^3 \text{v}} \|\xi_0 f\|_2^2 = \frac{2 \tilde{\text{u}}}{\text{v}^3 \text{v}} \left[2 \pi \int_0^2 \pi \frac{1}{\text{t}} \frac{2}{\text{t}} (\theta_k^2 + \theta_k^2) \right]$

\n $\therefore \|\xi\|_2^2 = \frac{2 \tilde{\text{u}}}{\text{v}^3 \text{v}} \|\xi_0 f\|_2^2 = \frac{2 \tilde{\text{u}}}{\text{v}^3 \text{v}} \left[2 \pi \int_0^2 \pi \frac{1}{\text{t}} \frac{2}{\text{t}} (\theta_k^2 + \theta_k^2) \right]$

\n $\frac{\text{eq: By Fourier series of } \xi_1(x) = x \text{ on } \mathbb{F} \mathbb{T} \mathbb{T}$

\nand $\text{Parseval}(s) = \frac{2}{\tilde{\text{v}}} \frac{1}{n^2} = \frac{\Gamma^2}{6} \quad \text{(Euler Faulal}$

C42	Metnic Spale
Th+Uis Clüpter, X always donotes a non-eupty set.	
Q5: A <u>widthic</u> on X is a function	
$d: X \times X \Rightarrow [0,+\infty)$ such that	
$\forall x, y, z \in X$	
(M1) $d(x,y) \ge 0$ e "equality holds \Leftrightarrow X=y"	
(M2) $d(x,y) = d(y,x)$	
(M3) $d(x,y) \le d(x,z) + d(z,y)$	
The pair (X,d) is called a <u>metric space</u> .	

Note : Condition (M3) is alled the triangle unequality.