$\mathcal{S}(4 \text{ Weierstrass}$ Approximation Theorem (Application of Thm1.7) Recall: A cts function of defined on $[a,b]$ is piecewise linear $if \exists a \text{ partition } a = a_0 < a_1 < \dots < a_n = b \text{ such that}$ g is linear on each subinterval Ia_{j}, a_{j+1} .

Prop II	Let f be a ctx function m [q,b]. Then $\forall \xi > 0$,
\exists a ct y piecewise linear y with $g(a) = f(a)$, $g(b) = f(b)$ such that $ f-g _{\infty} < \xi$	
$(f-g _{\infty} = \text{sup } f(x)-g(x))$	

$$
Pf: f \text{ at a closed interval } [a,b]
$$
\n
$$
\Rightarrow f \text{ unit and } f \text{ an } [a,b]
$$
\n
$$
\Rightarrow \forall f>0, \exists \delta>0 \text{ s.t.}
$$
\n
$$
|f(x)-f(y)| < f'z, \forall |x-y| < \delta \quad (x,y \in [a,b])
$$
\n
$$
\text{Partition } [a,b] \text{ into subintervals } T_j = [a_j, a_{j+1}]
$$
\n
$$
s.t. \quad |T_j| = a_{j+t} - a_j < \delta, \forall j.
$$
\n
$$
Q(x) = \frac{f(a_{j+t}) - f(a_j)}{a_{j+t} - a_j} (x - a_j) + f(a_j), \forall x \in I_j.
$$

Clearly,
$$
g(a_j) = f(a_j) > 4j
$$
.

\nIn particular, $g(a) = f(a) = g(b) = f(b) = f(b) = f(a \text{ and } g(x)$ is piecewise linear on $[a, b]$ (and $dx = 0$)

\nThen, $4 \times e \leq j \leq [a, b]$

\nIf $(x) - g(x) = \left| \frac{f(x) - \frac{f(a_{j+1}) - f(a_j)}{a_{j+1} - a_j} (x - a_{j}) - \frac{f(a_{j})}{a_{j+1} - a_{j}} \right|$

\n $\leq \left| \frac{f(x) - f(a_{j})}{a_{j+1} - a_{j}} \right| + \left| \frac{f(a_{j+1}) - f(a_{j})}{a_{j+1} - a_{j}} \right| \xrightarrow{X - a_{j}}$

\n $\leq \frac{e}{z} + \frac{e}{z} = \epsilon$

\n $\therefore \text{ supp } (f(x) - g(x) | < \epsilon > ie. ||f - g||_{\infty} < \epsilon$.)

Terminology Atrigonometric polynomial is ofthe fam PCCox Aix where Pl ^x ^y is ^a polynomial of ²variable

Note ^A trigonometric polynomial is ^a finite Fourierseries and vice versa Ex

Prop1.12	let f be a ct function on	Io,TJ	How $Y\xi>0$
3 a trègomometric polynomial	4 s4	$ \xi-\hbar _{\infty}<\epsilon$	

 Pf : Extend f to ETJ π J by $f(x) = \begin{cases} f(x) & x \in [0,\pi] \\ f(-x) & x \in [-\pi,0] \end{cases}$ (extension) Then this extension is cts on $F(T, T)$ a $f(T) = f(T)$,

Figure 2.3.1. If
$$
-\frac{1}{2}
$$
 is a $2\pi - \frac{1}{2}$ and $\frac{1}{2}$.

\nBy $\text{Pop } L|1$, $\forall \xi > 0$, \exists piecewise linear $(\text{ab} > 9 \text{ m} \text{cm})$.

\nSubstituting one $L\pi, \pi\mathbb{Z}$ and $\frac{1}{2}(\pi) = f(\pi) = f(-\pi) = 9(-\pi)$.

\nSubstituting the π and π and π are the same.

\nNow, π is a π and π is a π and π and π .

\nNow, π is a π and π is a π and π .

\nThus, π is a π and π is a π and π .

\nThus, π is a π and π is a π and π .

\nThus, π is a π and π is a π and π .

\nThus, π is a π and π is a π and π .

\nThus, π is a π and π is a π and π .

\nThus, π is a π and π is a π and π .

\nThus, π is a π and π is a π and π is a π .

\nThus, π is a π and π is a π and π is a π .

\nThus, π is a π and π is a π .

\nThus,

$$
Pf: (middle [a,b] = [0,\pi] finst.Extend f to E\pi, \piJ as in Prop112.He>to, choose trigonometric polynomial $R = P(\omega_{x}, \omega_{x} \times s_{x} \times s_{x} \times s_{x})$
 $||f - \pi ||_{\infty} < \xi_{2}$
Using the fact that
$$

 $I(f - g||_{\infty} < \epsilon$.

$$
cos X = \sum_{N=0}^{\infty} \frac{(-1)^N X^{2N}}{(2N)!}
$$
, $dim X = \sum_{N=1}^{\infty} \frac{(-1)^N X^{2N-1}}{(2N-1)!}$

Consider the following property:

\n
$$
\exists N > 0 \leq x.
$$
\n
$$
\left\| \theta(x) - P\left(\sum_{n=r}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, \sum_{n=1}^{n} \frac{(-1)^n x^{2n-1}}{(2n-1)!}\right) \right\|_{\infty} \leq \sum_{n=1}^{\infty} \left(\frac{(-1)^n x^{2n-1}}{(2n-1)!}, \sum_{n=1}^{\infty} \frac
$$

S1.5 Mean Conwagnu of Fourier Series
\nNotatten :
\nRET,
$$
\pi I
$$
 = set of Rienaan ütegnable (real) fuuctlav on [–T, TJ].

Def	11	14	15	16	12	product	12	inver product
13	given by	$\langle f, g \rangle_2 = \int_{-\pi}^{\pi} f(x)g(x) dx$						
10	10	10	$\langle f, g \rangle_2 = \int_{-\pi}^{\pi} f(x)g(x) dx$					
11	10	11	$\langle f, g \rangle_2 = \int_{-\pi}^{\pi} f(g) dx$					
12	11	11	$\langle f, g \rangle_2 = \int_{-\pi}^{\pi} f(g) dx$					
11	11	11	$\langle f, g \rangle_2 = \int_{-\pi}^{\pi} f(g) dx$					
11	11	$\langle f, g \rangle_2 = \int_{-\pi}^{\pi} f(g) dx$						
11	11	$\langle f, g \rangle_2 = \int_{-\pi}^{\pi} f(g) dx$						
11	11	$\langle f, g \rangle_2 = \int_{-\pi}^{\pi} f(g) dx$						
11	11	$\langle f, g \rangle_2 = \int_{-\pi}^{\pi} f(g) dx$						
11	11	$\langle f, g \rangle_2 = \int_{-\pi}^{\pi} f(g) dx$						
11	11	$\langle f, g \rangle_2 = \int_{-\pi}^{\pi} f(g) dx$						
11	11	$\langle f, g$						

Cautim = L-nnum & L=distance on RLTIT) are not really
\n"num" a "distance" in the strict sense as
\n
$$
\int_{\|f-g\|_2=0} \Rightarrow f=0 \text{ in } RFT.T
$$
\n
$$
\|f-g\|_2=0 \Rightarrow f=g \text{ in } RFT.T
$$
\n(We only have
$$
\int_{f=g} \int_{-\infty}^{\infty} d\theta \text{ over } \theta
$$

Note: If \overrightarrow{a} not hard to show that $\overrightarrow{5n} \rightarrow 5$ uniformly \Rightarrow 11.5n-511 $z \rightarrow 0$				
11.5n-511 $z \rightarrow 0$ \Rightarrow 5n $\rightarrow 5$ uniformly 1				
12.5	11.5n-511 $z \rightarrow 0$ \Rightarrow 5n $\rightarrow 5$ uniformly 1			
23	1	5n00 = 10, 0000		
24	11.5n-511 $z \rightarrow 0$ \Rightarrow 5n $\rightarrow 5$ uniformly 1			
25	11.5n-511 $z \rightarrow 0$ \Rightarrow 11.5n $\rightarrow 0$ in 2.50000			
26	11.5n-70	11.5n-70	11.5n-70	
27	20	20	21.5n-70	21.50000
28	20.5n-70	21.5n-70	21.5n-70	22.50000
29	20.5n-70	21.5n-70	22.50000	
20.60	24.5n-70	20.5n-70	21.5n-70	22.50000
20.60	20.60	21.5n-70	22.5n-70	
20.60 </td				

$$
\frac{1}{\sqrt{2\pi}}\int_{\frac{1}{\sqrt{1}}}\frac{1}{\sqrt{1}}\omega_{\text{MN}}\int_{\frac{1}{\sqrt{1}}}^{\frac{1}{\sqrt{1}}}2\bar{u}_{\text{MN}}\int_{\frac{1}{\sqrt{1}}}\omega_{\text{MN}}\omega_{\text{N}}=\frac{1}{\sqrt{1-\frac{1}{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{
$$

\n $\text{Udotation}: \text{We denote}$ \n
\n $E_N \stackrel{def}{=} \text{span}\{\frac{1}{4\pi}, \frac{1}{4\pi} \text{conv}, \frac{1}{4\pi} \text{sum}\}_{n=1}^{N}$ \n
\n $= (2N+1) \text{d}\bar{u} \cdot (2N+1) \text{trigonomial} \cdot (2N+1) \text{trigonomial} \cdot (2N+1)$ \n
\n $\text{Sum} \cdot E_N = 2N+1$ \n

we set
$$
\mathcal{S}_n = \text{span}\langle \varphi_1, ..., \varphi_n \rangle
$$

\n $= n - \text{dim}\ell \text{ subspace spanned by the 1st } n$
\n $\frac{\int u\cdot\text{d}u}{\int u\cdot\text{d}u} = \text{inf} \text{sum} \text{ with } \text{sum} \text{ problem}$
\n $\frac{\int u\cdot\text{d}u}{\int u\cdot\text{d}u} = \text{gcd} \text{log} \text{ and } \text{sum} \text{ with } \text{log} \text{ and } \text{sum} \text{ with } \text{log} \text{ and } \text{sum} \text{ with } \text{log} \text{ and } \text{log$

Prop(.)
$$
\frac{4}{4}
$$
: The unique minimizer of $\frac{m+1}{9c4n}$ ||f-9||₂ is
attained at the function $9 = \sum_{k=1}^{n} \langle f, \phi_k \rangle$ $\phi_k \in A_n$

\n $Bf: N\& that \n maining: \n If -g112 <= 3 \n Bf = \frac{1}{2} \n Bf + \frac{1}{2} \n Bf + \frac{1}{2} \n Bf + \frac{1}{2} \n Bf - \frac{1}{$
--

(2)
$$
dist(f, dn) (= inf\{dist(f, g) : gcd_{n}\})
$$

= $||f - Pr_{n}f||_{2}$

Cor1.15 For 2T-periodic,
$$
f
$$
 undergoable on $[-T,T]$ and
\n $n>1$,
\n $||f-S_nf||_2 \le ||f-g||_2$, Hg of the f can
\n $\int_{0}^{1} \frac{1}{h} f dx$ from
\n $\int_{0}^{1} \frac{1}{h} f dx$ from
\n $\int_{0}^{1} \frac{1}{h} f dx$ from
\n $\int_{0}^{1} \frac{1}{h} f dx$

Pf: By clet. of Fourier coefficients
$$
S_{n}S = P_{n}S
$$
 of the
\nspan $\frac{1}{\sqrt{2\pi}}$, $\frac{1}{\sqrt{\pi}} \cosh x = \frac{1}{\sqrt{\pi}} \sin kx \int_{k=1}^{n}$.
\n $a_{0} = \langle S, \frac{1}{\sqrt{2\pi}} \rangle_{2} \cdot \frac{1}{\sqrt{2\pi}}$
\n $a_{n} \sin x = \langle S, \frac{1}{\sqrt{\pi}} \cos nx \rangle_{2} \cdot \frac{1}{\sqrt{\pi}} \sin nx$ (Ex!)
\n $b_{n} \sin nx = \langle S, \frac{1}{\sqrt{\pi}} \sin nx \rangle_{2} \cdot \frac{1}{\sqrt{\pi}} \sin nx$
\n $\frac{\sin ||.16}{\pi} \text{ Pa. 24-periodic (real) 5! \text{4!} \cdot \text{cm} 5 (Riemann) 2! \cdot \text{4!} \cdot \text{cm} 1}$
\n $m [-\pi, \pi]$. $\lim_{n \to \infty} ||S_{n}S - S||_{2} = 0$
\n \therefore the *n*th partial sum of the Fourier Series of 5 (mreges to
\n $\frac{1}{3} \text{ in } L^{2}\text{-sure.}$