MATH3060 HWI Due date: Sep 24, 2021 (at 12:00 noon)

1. Each of the following functions are defined on (-T,T). <u>Shetch</u> the 2T-periodic extension, <u>find</u> the corresponding Fourier expansion, and <u>discuss</u> the pointwise convergence (using Thm 1.5 and 1.6)

(a)
$$f(x) = \begin{cases} x , x \in [0,\pi] \\ -x, x \in (-\pi,0) \end{cases}$$

$$(b) \quad f(x) = \begin{cases} 1 & x \in [0, \pi] \\ 2 & y \in (-\pi, 0) \end{cases}$$

$$(c) \quad f(x) = e^{zx}$$

(2) Show that the function

$$f(x) = \begin{cases} |x|^{\frac{1}{2}} \sin \frac{1}{x}, & x \in [-T, T, T, 1 \setminus 0] \\ 0, & x = 0 \end{cases}$$
is not Lipschitz continuous at $x = 0$.

(3) Consider the function $f(x) = x^2$ on $(0, 2\pi]$ and its 2π -periodic extension f(x) by $f(x) = f(x - 2k\pi)$ for $x \in (2k\pi, 2(k+1)\pi]$, $\forall k \in \mathbb{Z}$. Shetch \tilde{f} , find its Fourier series, and <u>discues</u> the pointwise convergence. Finally, if the Fourier series converges at the point x=0, what value does it limit to?

(4) Consider the same function $f(x) = x^2$ but only on $[0, \pi]$. Extending its to an odd function $f_i(x)$ on $[T, \pi]$, then further extend f_i to a 2π -periodic function \tilde{f}_i as usual. Shetch \tilde{f}_i , find its Fourier series, and <u>discuss</u> the pointwise convergence. Finally, if the Fourier series converges at the point x=0, what value does it limit to? Is it the same value as in the problem (3)?

(End)