
 

Motivation ofthe definitionofFourierSeries

If fix Aot É fancernxtbusainx VXER
assume uniformly convergent

Then St fix asmxdx

aofesmxdxtnflanfosnxcesmxdxtbnfsainx.com
T

Itis easy to calculate
gyamax y't

it no

o if Mto

Stanxosmxax
T if man
O fm a

SI sinnxcesmxdx 0 tn mzl

Hence if m 0

LHS S fix dx
RHS ago

90 SIX dx

If MIO
LHS SIfixosmxdx am fix osmxdx
RHS Am

Similarly consider

Stfixswimxdx aosfsiumxdxtffanfasnxsnimxdxtbn.fi'sinuxsuimxdx
T T



andusing
y
S I sinned 0

no
manIsminxswimxdx t

t if n n

bm SIfix sinmxdx t me l

Note ForanyRiemannintegrable function f on ET I
we can define all the do an bn nai as in the deft
and hence the Favierseries

On the otherhand we can restrict a f to CT T
and extend periodically to a 21 periodic function I m IR

iii

And according to the deft ofFourier coefficients
f I have the same Fourierseries
So we will not distinguish F F

Notation We use fix do t É faucesnxt basainx
means the trigonometric series on the RHS is the

Fourier series of f
doesnot uidicate the series converges to f in any sense



eg lil fix X restricted to GT T ti

gExtension to 2T periodicfunction

I m IR

i t e
t y six tI

3711 T Til 137
b d I

ao s xox o

an St xosuxdx o

bn S I xsuinxdx HMI check

I fix X É G Zsuinx
2 If 4 sinnx is a sure series

f is odd
Notes 4 Fa X IT Fourier series4 0

But filet IT Fourierseries1,50
F IT TI

Convergence is not clear fax IT

as the terms decay like I It doesn'tcarge

Notation Big0 small o

let xu's be a sequence then
i Xn O ns Hale Cns fu somecast C 0

IS Xn o ns ks o as new



egs i Xn 245 sin ax 0 n 0 at Xn E

II Xn log n o n but o as n o

Eg1.2 fax X restricted to CT T

Extension to a a periodic IUE
function I on IR

te
Fz is continuous since fact fact

fi is an even function
It is an easy exercise of integration to find that

fax X E 4 É G can x Ex
Caine series f even

Onesees that an 0 he Elan Is a

Fourier series converges uniformly to a continuousfunction

Will it be the function Ie See later discussion

Observation Egs ez oddfunction swieseries

even function cosineseries

Thisis true in general Ex



ComplexFourierSeries
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Remarks 4 f is differentiable on IT TJ doesn't atplies
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