6.4 Taylor's Theorem

Recall: If $f(x)$ has n -th dirivative at α point x_0 , then the polynomial $P_n(x) = f(x_0) + f(x_0)(x-x_0) + \cdots + \frac{f^{(n)}}{n!}(x_0)(x-x_0)^n$ is called the n-th Taylor's Polynomial for fat Xo.

Note:
$$
P_{\eta}^{(k)}(x_{0}) = f^{(k)}(x_{0}) \quad \forall k=0,1,...,n
$$
.

Tim 6.4.1 (Taylor's Thm)

\nLet **.**
$$
n \in \mathbb{N}
$$
 (ie. $n = 1, 2, \dots$)

\n**.** $f: [a,b] \rightarrow \mathbb{R}$ such that $(a \leq b)$

\n**.** $f': \dots, f^{(n)}$ are continuous on [a,b] and

\n**.** $f^{(n+1)}$ exist on (a, b) .

\nIf $x_0 \in [a, b]$, then $\forall x \in [a, b]$, \exists c between x_0 and x such that $f(x) = P_n(x) + \frac{f^{(n+1)}}{(n+1)!}$ ($x - x_0$)ⁿ⁺¹

\nwhere $P_n(x) \geq f_n(x) + \frac{f^{(n+1)}}{(n+1)!}$ ($x - x_0$)ⁿ⁺¹

\nwhere $P_n(x) \geq f_n(x)$ is the n -th Taylor's Polynomial of f at x_0 .

<u>Remark</u>: R_n(x) = f(x) - Pn(x) is referred as the <u>remainder</u> and $R_{n}(x) = \frac{5^{(n+1)}(c)}{n+1}(x-x_{0})^{n+1}$

If (of Thm 6.4.1)

\nlet x₀, x
$$
\in
$$
 [a, b] be given.

\nIf x₀ = x, then the formula is clear.

\nIf x₀ = x, then the formula is clear.

\n \exists x₀ + x, we let

\n \exists = [x₀, x] or [x, xa, depending on x > xa or x₀ > x.

\nThen \exists io a closed interval. \exists c(x, b)

\n(onsider, ξ_n \pm c \exists ,

\n \exists f(x) = f(x) - f(x) - (x - \pm x) f(x) - \frac{(x - \pm x)^2}{2} f(x) - \cdots - \frac{(x - \pm x)^k}{n!} f(x)

Then, \bullet $F(x) = 0$, \bullet $F(x_0) = f(x) - P_n(x) = R_n(x)$ is the remainder

And, by a
and, by a
obt² or F(t) is containing on J, and

$$
F(t) = -f(t)
$$

$$
+ f(t) - (x-t) f'(t)
$$

$$
+ (x-t) f'(t) - \frac{(x-t)^{2}}{2} f^{3}(t)
$$

$$
+ ...
$$

$$
+ \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) - \frac{(x-t)^{n}}{n!} f^{(n+1)}(t)
$$

$$
= - \frac{(x-t)^{n}}{n!} f^{(n+1)}(t)
$$

Consider further the function
\n
$$
G(x) = F(x) - (\frac{x-\pm}{x-x_0})^{n+1} F(x_0)
$$
 $\int_{-\infty}^{\infty} f(x) dx$

Then G is continuous on J, differentiable in the interia of J, and $\int (f(x_0) = F(x_0) - (\frac{x_0 + 1}{x_0}) F(x_0) = 0$ $\overline{\mathcal{L}}$ $G (x) = F(x) - (\frac{x - x}{x - x_0}) F(x_0) = 0$

By Rolle's Thin, $\exists c \in \bar{u}$ terior of J (ie between $x \circ ax$) St. $0 = G(c) = F(c) + (h+1) \frac{(x-c)}{(x-x_0)^{n+1}} F(x_0)$

$$
\therefore R_n(x) = F(x_0) = -\frac{1}{(n+1)} \cdot \frac{(x-x_0)^{n+1}}{(x-c)^n} F(c)
$$

$$
= -\frac{1}{(n+1)} \cdot \frac{(X-X_0)^{n+1}}{(X-C)^n} \cdot \left(-\frac{(X-C)^n}{n!} \mathcal{F}^{(n+1)}(C)\right)
$$

$$
= \frac{(X-X_0)^{n+1}}{(n+1)!} \mathcal{F}^{(n+1)}(C)
$$

$$
\cdot \frac{1}{X}
$$

Applications of Taylor's Theorem
\n*eq 6.4,2* (Approximation of values)
\n(a) Use Taylor's Thm with n=2 to approximate
$$
{}^{3}J+x
$$
, near x=0 (x> -1)
\nLet f(x) = ((+x)³, x₀ = 0
\n
$$
F_{0L} \eta = 2, P_{2}(x) = f(x_{0}) + f(x_{0})(x-x_{0}) + \frac{f'(x_{0})}{2!}(x-x_{0})^{2}
$$
\nusing f(x) = ((+x)³, f(0) = 1,
\n
$$
\Rightarrow f'(x) = \frac{1}{5}((+x)^{-3/5}, f'(0) = \frac{1}{5}
$$
\n
$$
\Rightarrow f'(x) = -\frac{2}{9}((+x)^{-3/5}, f'(0) = -\frac{2}{9}
$$
\n
$$
\therefore P_{2}(x) = 1 + \frac{1}{5}x - \frac{1}{9}x^{2}
$$
\nAnd thus f(x) = P_{2}(x) + R_{2}(x) = 1 + \frac{1}{5}x - \frac{1}{9}x^{2} + R_{2}(x)

where $R_2(x) = \frac{1}{3!} f''(c)(x-x_0)^3 = \frac{1}{3!} (\frac{2 \cdot 5}{9 \cdot 3})(1+c)^{-\frac{8}{3}} x^3$ = $\frac{5}{8}$ (HC) $\frac{8}{3}$ \times 3 for some c between 0 ex.

Explicit eq: If
$$
x = 0.3
$$
.

\nThen

\n
$$
P_{2}(0.3) = 1 + \frac{1}{3}(0.3) - \frac{1}{3}(0.3)^{2} = 1.09
$$
\n
$$
R_{2}(0.3) = \frac{5}{81} \cdot \frac{1}{(1+C)^{8}6}(0.3)^{3}
$$
\n
$$
\Rightarrow |R_{2}(0.3)| \leq \frac{5}{81}(0.3)^{3}
$$
\n
$$
\Rightarrow |R_{2}(0.3)| \leq \frac{5}{81}(0.3)^{3}
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n
$$
\Rightarrow 1 + C > 1
$$
\n $$

(b) Use Taylor's Thin to approximate e with error < 10⁻⁵ (5 decimal places) (Assuming that we have defined e^x & proved $(e^x)' = e^x$, e^x invancing, and $e < 3$.)

Let
$$
g(x) = e^{x}
$$
, $x_0 = 0$.
\nThen by $(e^{x})' = e^{x}$, we have $g^{(k)}(x) = e^{x}$, $\forall k=1,3,3,...$
\nSuppne that we need to use Taylor's Thus up to n.
\nThen the error is given by the remainder term
\n $R_n(x) = \frac{1}{(n+1)!}e^{c} \times^{n+1}$ for some c between $0 \le x$.

Take $x=1$, we have $R_n(1) \leq \frac{e}{(n+1)!} < \frac{3}{(n+1)!}$ 5 H_{HML} , to ensure $error < 10$ we need 5 $\stackrel{3}{=}$ $\frac{1}{\sqrt{n+1}}$ < 10 should use the smallest i.e. $(n+1)! > 3 \cdot 10^{5} = 300000$ possible n to reduce calculation $Try: (8+1)! = 9! = 362880$ $((7+1)! = 8! = 40,320)$ $in n = 8$ is the required value and hence $e = g(1) \approx P_8(1) = g(0) + g'(0) + \frac{g'(0)}{2!} \cdot 1^2 + \dots + \frac{g^{00}(0)}{8!} \cdot 1^8$ 5 $1 + 1 + \frac{1}{2!} + \cdots + \frac{1}{8!}$ with error 10 $= 2.718278...$ (we calculator/computer) $e = 2.71828$ upto 5 decimal places $\begin{array}{c}\n\lambda \\
\lambda\n\end{array}$

og 6.4.3 (Applications to inequalities) (a) $1 - \frac{1}{2}x^2 \leq 0$ $x, y \in \mathbb{R}$

$$
\begin{array}{ll}\n\text{Pf}: & \text{let } f(x) = \text{Cox} \quad \text{X}_0 = 0, \\
\text{Then, Taylor's Thm} \Rightarrow \\
\text{Cox} = 1 - \frac{1}{2}x^2 + R_2(x) & \text{Cchock!} \end{array}
$$

$$
ln^3H \qquad R_2(x) = \frac{f^{(3)}(c)}{3!}x^3 = \frac{dim\ c}{6}x^3 \qquad \text{for some } c \text{ between } 0 \text{ s.t.}
$$

If
$$
0 \le x \le \pi
$$
, then $0 \le c < \pi$ (the case $x = 0$, we have $c = 0$)

\nSince $R_2(x) \ge 0$.

\nTherefore, $1 - \frac{1}{2}x^2 \le \omega_0 x$ and $x \in C_0$.

\nIf $x \in C^{\pi}, 0$, then $y = -x \in C_0$.

\nUsing $(\omega(-x)) = \omega_0 x$, we have $1 - \frac{1}{2}x^2 \le \omega_0 x$. (check!)

\nHence, $1 - \frac{1}{2}x^2 \le \omega_0 x$, $\forall x \in [-\pi, \pi]$.

\nIf $|x| > \pi$, then $1 - \frac{1}{2}x^2 < 1 - \frac{1}{2}\pi^2 < -1 \le \omega_0 x$

\nAll together, $1 - \frac{1}{2}x^2 \le \omega_0 x$ and $x \in \mathbb{R}$.

(b)
$$
\forall k=1,2,3,...
$$
 $\land \forall x>0$
 $X-\frac{1}{2}X^{2}+\frac{1}{3}X^{3}-...-\frac{1}{2k}X^{2k}<\mathcal{L}_{M}(1+X)< X-\frac{1}{2}X^{2}+\frac{1}{3}X^{3}-...+\frac{1}{2k+1}X^{2k+1}$

$$
\begin{array}{lll}\n\mathbf{f}: & \text{let } f(x) = \mathbf{u}((+x) & \text{for } x > -1 \\
\text{Then } f'(x) = \frac{1}{1+x}, & \mathbf{f}'' = \frac{-1}{(1+x)^2}, \cdots & \mathbf{f}^{(n)} = \frac{(-1)^{n-1}(n-1)}{(1+x)^n} \\
\therefore & \mathbf{f}^{(n)}(0) = (-1)^{n-1}(n-1) \\
\end{array}
$$

$$
\Rightarrow \text{ with } \text{Taylor's Poly of } \text{lu}(1+\text{X}) \text{ at } \text{X=0} \text{ is}
$$
\n
$$
P_n(x) = 0 + 1 \cdot x - \frac{1}{2!} \cdot x^2 + \frac{1}{3!} (2!)x^3 - \dots + \frac{1}{n!} (-1)^{n-1} (n-1)! x^n
$$
\n
$$
= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots + \frac{(-1)^{n-1}}{n} x^n
$$

(mistake in Textbook) aud Remainder is $R_{n}(x) = \frac{(-1)^{n} n!}{(n+1)!} \frac{1}{(1+c)^{n+1}} x^{n+1}$ for some clearmer

$$
\begin{aligned}\n\text{If } x > 0, \text{ then } c > 0, \text{ and } \text{done} \text{ } |t c > 1 \\
\Rightarrow \qquad \qquad \Rightarrow \qquad \qquad \text{Rn}(x) &= \frac{(-1)^n}{(n+1)} \cdot \left(\frac{x}{it c} \right)^{n+1} \qquad \qquad \text{if } c \qquad \qquad \text{if } n \text{ odd.}\n\end{aligned}
$$

 $\cdot \cdot \cdot$ Fax $n=2k$, $ln(HX) = P_{2k}(X) + R_{2k}(X) > P_{2k}(X)$ ie. $ln(l+x) > x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \cdots - \frac{x^{2k}}{2^{k}}$ ($\forall x > 0$)

a Fn n=2kt
\n
$$
\ln(1+x) = P_{2kt1}(x) + R_{2kt1}(x) < P_{2kt1}(x)
$$

\n $i e \quad ln(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots + \frac{x^{2kt1}}{2kt1}$ (4x>0)
\n $\frac{x^2}{2} + \frac{x^3}{3} - \cdots + \frac{x^{2kt1}}{2kt1}$

 (C) $e^{\pi} > \pi^e$ Pf = Taylor's Thm $\Rightarrow e^{x} = 1+x + R_{1}(x)$ (see eg 6.4.2) w^1 th $R_1(x) = \frac{e^C}{2!}x^2 > 0$ for some C between $0 \& X$. (whing the fact that $e^{c} > 0$, $\forall c \in \mathbb{R}$) \therefore \mathbb{C}^{\times} > I+X, \forall X \neq 0 Put $X = \frac{\pi}{\rho} - 1 > 0$ (wang kuonon approx, values of π ∞) into it, we have $\beta^{\frac{17}{6}-1} > 1 + \frac{17}{9} - 1 = \frac{17}{9}$ \Rightarrow $e^{\frac{\pi}{e}} > \pi$ \Rightarrow e^{π} > π ^e $*$

Application to Relative Extrema (Higher Derivative Test)

Then 6.4.4 for
$$
s: I \rightarrow \mathbb{R}
$$
, $(I = interval)$

\n\n- 8. be an interior point of I
\n- 9. $s' \rightarrow s''$, $s'' \rightarrow s'''$ exist and continuous
\n- 1. $s'' \rightarrow s'''$ exist and continuous
\n- 2. $s'' \rightarrow s'''$ units and continuous
\n- 3. $s''(x_0) = s''(x_0) = \cdots = s^{(n-1)}(x_0) = 0$, $s'''(x_0) \neq 0$
\n
\nThen

\n\n- (i) n even a b a b b c c c d trivial d x_0
\n- (ii) n even a b c d e e b a u b c a u b b c a b c b c c d b d x_0
\n
\nThus, $a = \frac{f^{(n)}(x_0) < 0}{1 - \frac{f^{(n)}(x_0) + 0}{1 - \frac{f^{(n)}(x_0$

Remark: If $n=z$, it is the 2nd Derivative Test.

$$
\begin{aligned}\n\Box f: & \Box f \quad f^{(n)}(x_0) \neq 0 \quad \text{and} \quad f^{(n)}(\text{intimulus}) \\
\text{then } \Box \text{ hold } & \cup = (x_0 - \delta, x_0 + \delta) \subset \Box \text{ of } x_0 \text{ such that} \\
Sgn(f^{(n)}(x)) &= Sgn(f^{(n)}(x_0)), \quad \forall \quad x \in \cup \Box \quad \text{ (if)} \\
\text{Now, using } f'(x_0) = \cdots = f^{(n-1)}(x_0) = 0, \\
\text{the Taylor's Thw}\n\end{aligned}
$$

$$
\Rightarrow f(x) = f(x_{0}) + \cdots + \frac{f^{(n-1)}}{(n-1)!}(x-x_{0})^{n+1} + \frac{f^{(n)}}{n!}(x-x_{0})^{n}
$$

= f(x_{0}) + $\frac{f^{(n)}}{n!}(x-x_{0})^{n}$, for some c between x₀ x x

Case (i) *n* then,
$$
f^{(n)}(x_0) > 0
$$
.

\nBy (†) 2 [aylor's, \forall X \in U

\n
$$
f(x) - f(x_0) = \frac{f^{(n)}(C)}{n!} (x - x_0)^n \ge 0
$$
\nSince n even \Rightarrow $(x - x_0)^n \ge 0$ \forall $x \in U$

\n
$$
f^{(n)}(x_0) > 0 \Rightarrow f^{(n)}(x) > 0
$$
\nLet $U \Rightarrow C \in U$

Case (iii)	n turn	$f^{(n)}(x_0) < 0$
By (t) 2 [aylor's, \forall X \in U		
$f(x) - f(x_0) = \frac{f^{(n)}}{n!} (x - x_0) \le 0$		
Since n even $\Rightarrow (x - x_0)^n \ge 0 \forall x \in U$		
$f^{(n)}(x_0) < 0 \Rightarrow f^{(n)}(x_0) < 0 \Rightarrow f^{(n)}(x_0) < 0$		

-- f has a relative maximum at xo.

Case (iii) nodd

Taylor's Thm \Rightarrow $\forall x \in U$ $f(x)-f(x_0) = \frac{f^{(n)}(c)}{n!}(x-x_0)^n$ changes sign Since n odd \Rightarrow $(x-x_0)^n$ change sign $f^{(4)}(x_0) + 0 \implies f''(x)$ has fixed sign $(x \in U \Rightarrow c \in U)$: Not maximum and also Not muisimum.

XX