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And the image of the horizontal arc CAN Ah is

a straight line segment by the property of the
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step2 Global behavior of FHHcz

Notethat the domains of Ek Eu overlaps on
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Then the land stimilar argument as in Prop4.1 Lis
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Finalstep

By steps 243 the entire function
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However we mentioned that we haven't proved that

Its maps IH conformablyonto R Now we can show it
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