Prop 4.1 Suppose
$$S(\bar{z})$$
 is given by (5) is the above definition
and $a_1, \dots, a_n = a_{\infty}$ are as in the remarks (iii)sec(iv).
(i) If, $\sum_{k=1}^{n} \beta_k = 2$, and
(i) If $a_{k=1} \beta_k = 2$, and
(i) f denotes the polygon whose vertices are given by
 a_{1,\dots,a_n} (iv order)
("polygon" = a closed curve consists of finitely many line segments.)
then $a_{\infty} = S(\infty)$ lies on the segment $[a_n, a_1]$
($B(R) = \beta > 1a_{\infty}S$
(Interior) angle at $a_k = a_k T$, $a_k = 1-\beta_k$.
(i) If $1 < \sum_{k=1}^{n} \beta_k < 2$, the similar conclusion holds with
vertices a_{1,a_2,\dots,a_n} , a_{∞} (in order), and
(Interior) angle at $a_{k} = x_{k}T$, $a_{k} = 1-\beta_{k}$.

$$\begin{split} & \underset{k=1}{\overset{n}{\Sigma}} \beta_{k} = 2 \\ & \underset{k=1}{\overset{n}{J}} \beta_{k} < X < A_{k+1} , \ k = J &; \ n-1 , \\ & \underset{k=1}{\overset{n}{Then}} \\ & \underset{(X-A_{1})^{\beta_{1}} \dots (X-A_{k})^{\beta_{k}}] \left[(X-A_{k+1})^{\beta_{k+1}} (X-A_{n})^{\beta_{n}} \right] \\ & \underset{k=1}{\overset{n}{J}} \\ & \underset{k=1}{\overset{n}{T}} \beta_{j} \\ & \underset{k=1}{\overset{n}{T}} \beta_{k} \\ & \underset{k=1}{\overset{n}{T}} \beta_{j} \\ & \underset{k=1}{\overset{n}{T}} \beta_{j} \\ & \underset{k=1}{\overset{n}{T}} \beta_{k} \\ & \underset{k=1}{\overset{n}{T} \beta_{k}$$

: ang
$$S(x) = -\pi \sum_{j \ge k} \beta_j$$

which is a constant for $x \in (A_k, A_{k+1})$.
 $\Rightarrow S[A_k, A_{k+1}]$ is a straight line segment that makes
an angle of $-\pi \sum_{j \ge k} \beta_j$ with the x-axis.

Notice that $S(x) = S(Ak) + \int_{Ak}^{x} S'(y) dy$ $\forall x \in (Ak, Ak+i)$. S(x) varies from end point Ak = S(Ak) to end point $A_{k+1} = S(A_{k+1})$ as x varies from Ak to A_{k+1} .

Similarly $\arg S'(x) = \begin{cases} 0 & \Im \times \times A_n \quad (i.e. \quad S'(x) > 0) \\ -\pi \sum_{k=1}^{0} \beta_k = -2\pi, \quad \Im \times < A, \end{cases}$

And
$$\cdot$$
 S(X) varies from $a_{\eta} = S(A_{\eta})$ to $a_{\infty} = S(A_{\omega})$
as X varies from An to ∞ .
 \cdot S(X) vorios from a_{∞} to $a_{1} = S(A_{1})$
as X varies from $-\infty$ to A_{1}
This shows that $a_{\infty} \in \Box a_{1}, a_{n} = (a_{u}gles with X-a_{N}) = 0 = -2\pi$
This proves $S(R) = \# \cdot |a_{\infty}|$.
Note that $\pi_{k+1} = -\pi \sum_{j>k} |k| = \pi_{k+1} = (-\pi \sum_{j>k} |k|) - (-\pi \sum_{j>k} |k|) - (-\pi \sum_{j>k} |k|) - (-\pi \sum_{j>k} |k|) = (-\pi \sum_{j>k} |k|) - (-\pi \sum_{j>k} |k|)$
 \cdot Interin augle at $a_{k} = \pi - (\pi \beta_{k}) = d_{k}\pi$.
Case (ii) $1 < \sum_{k=1}^{n} |\mu| < 2$ is subilar (EX!)

> (ii) Even $\mathcal{F} = \partial P$, Painply-connected region, Propf. I have't shown that $S = |H| \Rightarrow P$ is conformal. (See subsection 4.4 below)

4.3 Boundary Behavior

Let
$$P = \underline{polygonal region}$$
 with boundary $F(\underline{polygon})$
Then P is bounded, simply-connected open & connected.

Thm 4.2 If
$$F: D \rightarrow P$$
 is a conformal map.
then F extends to a continuous bijection
from the closure \overline{D} to the closure \overline{P} .
In particular $F|_{\partial \overline{D}} = \partial \overline{D} \rightarrow \overline{P}$ cto \underline{e} bijection.
 $\underline{Pf} = Onitted$ (as it's more of a real (geometric) analysis argument
and techincal.)

Remark: Thur 4,2 is not true for general proper simply-connected regions. It is true <> 252 is a Jordan curve,

be extended cartinuarly to DD. (Proof omitted)

4.4 The Mapping Formula

Let
$$F = |H \rightarrow P$$
 be conformal
• Existence is guaranteed by Riewann mapping thm.
 $F \longrightarrow P$
 $|H \longrightarrow D \longrightarrow P$
 $\stackrel{U}{\xrightarrow{V}} \longrightarrow W = \stackrel{V}{\underset{i+z}{\overset{V}{\xrightarrow{}}} \longrightarrow} G(w) = F(z)$
Riemann map

• Since Gentends continuously to \overline{D} by Thm 4.2 and $\overline{z} \mapsto W = \frac{\lambda-\overline{z}}{\overline{z+\overline{z}}}$ clearly extends continuously to the boundary X-axis, The conformal map $F = IH \rightarrow P$ extends continuously to \overline{IH} .

• May assume
$$A_k = F'(a_k) \in \mathbb{R}$$
 (i.e. no vertex of $F \iff \infty$)

$$(-\infty, A_1] \cup (A_n, \infty)$$
 Lan, $q_1]$
Thm 4.6 Let $F: |H \rightarrow P$ conformal, s.t. $F(\infty)$ is not a vertex of P .

$$S = Schwarg-Christoffel integral in subsection 4.2
with $A_k \in \beta_k$ as above
Then $\exists (cpx)$ constants C_1 and C_2 such that
 $F(z) = C_1 S(z) + C_2$. $(C_1 \neq 0)$$$

$$\begin{split} I \underline{dea \ of \ proof} : & If \ F = C_1 S + C_2 , \\ + fen \qquad F'(z) = \frac{C_1}{(z - A_1)^{\beta_1} \cdots (z - A_n)^{\beta_n}} \\ \Rightarrow \quad \log F'(z) = \log C_1 - \sum_{k=1}^n \beta_k \log (z - A_k) \quad (\text{whenever} \ defined) \\ \Rightarrow \qquad \frac{F'(z)}{F(z)} + \sum_{k=1}^n \frac{\beta_k}{z - A_k} = 0 . \\ Hence we need to study : J(s') behavior of F at A_k \end{split}$$

(ii) to conclude it is the constant zero.