Prop 4.1	Suppose	Sté)	is given by (5) is the above definition
and	a_{13} ...	an a a_{∞} are an in the remarks (ii's 2)(ii).	
(i) If	$\sum_{k=1}^{n} \beta_k = 2$, and		
• If denotes the polygon under.			
(i) Polygon' = a closed curve consists of finitely many line segments.)			
then	a_{13} ...	a_{14} and the segment $[a_{11}, a_{12}]$	
• $a_{\infty} = S(\infty)$ does			
• $\sum (\mathbb{R}) = \beta \setminus \{a_{\infty}\}$			
• $\sum (\mathbb{R}) = \beta \setminus \{a_{\infty}\}$			
• $\sum (\mathbb{R}) = \beta \setminus \{a_{\infty}\}$			
• $\sum_{k=1}^{n} \beta_k < z$, the similar conclusion holds with vectors a_{11}, a_{22} ... a_{1n} , a_{∞} (in order), and			
• $\sum_{k=1}^{n} \beta_k$ and $a_{\infty} = a_{\infty} \pi$,			
• $\sum_{k=1}^{n} \beta_k$ and $a_{\infty} = a_{\infty} \pi$,			
• $\sum_{k=1}^{n} \beta_k$ and $a_{\infty} = a_{\infty} \pi$,			
• $\sum_{k=1}^{n} \beta_k$.			

If
$$
A_k < X < A_{k+1}
$$
, $k=1, \dots, n-1$.

\nThen $S(x) = \frac{1}{[(x-A_1)^{\beta_1} \dots (x-A_k)^{\beta_k}]} \left[(x-A_{k+1}) \dots (x-A_N)^{\beta_N} \right]$

\nBy the choice of β each $x-A_3$ in β matrix.

\n $\alpha x_3 (x-A_3)^{\beta_3} = \begin{cases} 0 & \text{for } j \leq k \\ \pi \beta_3 & \text{for } j \geq k \end{cases}$

$$
\therefore \text{ arg } S(x) = -\pi \sum_{j>k} \beta_j
$$
\n
$$
\text{width to a constant } f_{\text{\'{e}t}} \times \epsilon (A_k, A_{k+1})
$$
\n
$$
\Rightarrow \quad S[A_k, A_{k+1}] \text{ is a straight line segment that makes}
$$
\n
$$
\text{and angle of } -\pi \sum_{j>k} \beta_j \text{ with the x-axis.}
$$

Notice that $S(x) = S(hk) + \int_{A_k}^{x} S(y) dy$ $\forall x \in (h_k, h_{k+1})$. S(x) vonies from cend point a_{k} = S(Ak) to end point $a_{\bf k^{+1}} = S(A_{\bf k^{+1}})$ as \times varies from $A_{\bf k}$ to $A_{\bf k^{+1}}$.

 $\arg S(x) = \begin{cases} 0 & \text{if } x > A_n \text{ (i.e. } S(x) > 0) \\ -\pi \sum_{k=1}^{0} \beta_k = -2\pi \sqrt{1 + 2\pi} \sqrt{1 + 2\pi}$ Sunilarly

And.
$$
S(x)
$$
 varies from $a_n = S(\hat{A}_n)$ to $a_{\infty} = S(\hat{A}_\infty)$
\n $a_{\infty} \times \text{varies from } A_n \text{ to } \infty$
\n \cdot $S(x)$ vanies from a_{∞} to $a_1 = S(\hat{A}_1)$
\n $a_{\infty} \times \text{varies from } a_{\infty} \text{ to } a_1 = S(\hat{A}_1)$
\n $a_{\infty} \times \text{varies from } a_{\infty} \text{ to } A_1$
\nThis shows that $a_{\infty} \in \mathbb{C}a_1$, $a_{n1} \text{ (augles with } x-\text{div}_a)$
\n $\Rightarrow a_{\infty} = \frac{a_{\infty}}{1 - \frac{1}{3}x} \text{ [L]}$
\nNote that $a_{\infty} = \frac{1}{3} \sum_{\substack{i=1 \\ i \neq i}}^{\infty} \text{[L]}$
\n $\Rightarrow a_{\infty} = \frac{1}{3} \sum_{\substack{i=1 \\ i \neq i}}^{\infty} \text{[L]}$
\n $\Rightarrow a_{\infty} = \frac{1}{3} \sum_{\substack{i=1 \\ i \neq i}}^{\infty} \text{[L]}$
\n $\Rightarrow a_{\infty} = \frac{1}{3} \sum_{\substack{i=1 \\ i \neq i}}^{\infty} \text{[L]}$
\n $\Rightarrow a_{\infty} = \frac{1}{3} \sum_{\substack{i=1 \\ i \neq i}}^{\infty} \text{[L]}$
\n $\Rightarrow a_{\infty} = S(A_n)$
\n $\Rightarrow a_{$

Notes: (i) For an arbitrary choice of n, Av.; An, Bv.; Bn, the "polygon" 4 in Prop 4.1 may not be simple. The following could

> (ii) Even $p = 3P$, Paringly-connected region, Prophil flasn't shown that $S: H \rightarrow P$ is conformal. (See subsection 4.4 below)

4.3 Boundary Beharior

Thm 4.2 If
$$
F: D \Rightarrow P
$$
 is a conformal map.

\nthen F extends to a continuous bijection

\nfrom the closure \overline{D} to the closure \overline{P} .

\nIn particular $F|_{\partial D} = \partial D \Rightarrow P$ $\overline{C}b$. a bijective.

\nPf: Onuited (as its map of a real (geometric) analysis argument, and technical.)

Renkirk: The 4,2 is not true for general proper simply-councted regions. $\exists t$ is true \Leftrightarrow $\partial \Omega$ is a Jordan curve,

4.4 The Mapping Famula

Let
$$
\cdot
$$
 P = bounded polygon region
\n \cdot # = boundary polygon of P
\n \cdot a₁, a₂,..., a_n ordered vertices of \cdot (n=3).
\n \cdot TH_k = interior angle at a_k.
\n \cdot TH_k = \cdot extenin angle at a_k, ie. $\beta_{k} = 1-\alpha_{k}$
\nThen $\sum_{k=1}^{n} \beta_{k} = 2$ (Elementary Eudidaan Geometry)

Let
$$
F = |H| \rightarrow P
$$
 be conformal
\n• Existence $\overline{\omega}$ guaranteed by Rieuaun mapping Hau .
\n F
\n $||H \longrightarrow D \longrightarrow P$
\n $\psi \longrightarrow w = \frac{\overline{r} - z}{\overline{r} + z} \longmapsto G(w) = F(z)$
\nRiemann map

Since Gestends continuously to ID by Thin4.2 and $7 \rightarrow W = \frac{\lambda - \overline{\tau}}{\lambda + \overline{\tau}}$ clearly extends cartinumually to the boundary X-axis, The conformal map $F = IH \rightarrow P$ extends continuously to IH.

• May assume
$$
A_{k} = F^{-1}(a_{k}) \in \mathbb{R}
$$
 (i.e. no vertex of $F \Leftrightarrow \infty$)

\n- $$
\vdash
$$
 \uparrow \uparrow

Then 4.6 Let
$$
F=IH \Rightarrow P
$$
 (asforward, 5.6. $F(\omega)$ is not a vertex of ϕ .

\n $S =$ $Schwarz$ -Christoffel integral in subsequent 4.2

\nwith $A_{k} = \beta_{k}$ as above

\nThen \exists (cpx) $Constant \ c_{1}$ and c_{2} such that

\n $F(z) = c_{1}S(z) + c_{2}$

\n($c_{1} \neq 0$)

$$
\frac{T_{daof}}{T_{fex}} = \frac{C_1 S_{fex}}{(\overline{z} - A_1)^{\beta_1} \cdots (\overline{z} - A_n)^{\beta_n}}
$$
\n
$$
\Rightarrow \quad \frac{C_1}{\beta_1} = \frac{C_1}{(\overline{z} - A_1)^{\beta_1} \cdots (\overline{z} - A_n)^{\beta_n}}
$$
\n
$$
\Rightarrow \quad \frac{C_2}{T_{fex}} = \frac{C_1}{T_{fex}} =
$$