MATH4060 Assignment 5

Ki Fung, Chan

April 20, 2021

- 1. (a) Suppose Φ is an automorphism of $\mathbb H$ that fixes three distinct points on the real axis. Then Φ is the identity.
	- (b) Suppose (x_1, x_2, x_3) and (y_1, y_2, y_3) are two pairs of three distinct points on the real axis with

$$
x_1 < x_2 < x_3 \quad \text{and} \quad y_1 < y_2 < y_3.
$$

Prove that there exists (a unique) automorphism Φ of $\mathbb H$ so that $\Phi(x_j) = y_j, j = 1, 2, 3$. The same conclusion holds if $y_3 < y_1 <$ y_2 or $y_2 < y_3 < y_1$.

Proof. (a) An automorphism of upper half plane must be of the form

$$
\Phi(z) = \frac{az+b}{cz+d}
$$

with $a, b, c, d \in \mathbb{R}$. We now solves for its fixed points:

$$
\frac{az+b}{cz+d} = z
$$

$$
cz^2 + (d-a)z - b = 0
$$

We have a quadractic equation, so there are at most two roots, unless $c = b = 0, d = a$, in which case Φ is the identity function.

(b) Uniqueness follows from part (a). For the existence, it suffices to prove the special case $(x_1, x_2, x_3) = (-1, 0, 1)$. Then we consider the map

$$
f(w) = \frac{w - y_2}{w - t} \cdot \frac{y_3 - t}{y_3 - y_2}
$$

We have $f(y_2) = 0, f(y_3) = 1$. If $f(y_1) = -1$, then we can take $\Phi = f^{-1}$. So we need to solve for $t \in \mathbb{R}$ so that $f(y_1) = -1$:

$$
\frac{y_1 - y_2}{y_1 - t} \cdot \frac{y_3 - t}{y_3 - y_2} = -1 \tag{1}
$$

$$
\frac{y_1 - y_2}{y_3 - y_2} = -\frac{y_1 - t}{y_3 - t} \tag{2}
$$

It has a unique solution as it turns out to be a linear equation. However, we want f to preserve \mathbb{H} , that is

$$
\frac{y_3-t}{y_3-y_2} \det \begin{pmatrix} 1 & -y_2 \\ 1 & -t \end{pmatrix} > 0
$$

or, equivalently,

$$
\frac{y_3 - t}{y_3 - y_2}(y_2 - t) > 0
$$
 (3)

It can be seen from (2) that, for each case considered in the question, we do have $t < y_2$. For example, when $y_1 < y_2 < y_3$, we must have either $t < y_1$ or $t > y_3$, for each case it is clear that (3) is true.

 \Box

2. Let

$$
f(z) = \frac{i - z}{i + z}
$$
 and $f^{-1}(w) = i\frac{1 - w}{1 + w}$

(a) Given $\theta \in \mathbb{R}$, find real numbers a, b, c, d such that $ad - bc = 1$, and so that for any $z \in \mathbb{H}$,

$$
\frac{az+b}{cz+d} = f^{-1}(e^{i\theta}f(z)).
$$

(b) Given $\alpha \in \mathbb{D}$, find real numbers a, b, c, d such that $ad - bc = 1$, and so that for any $z \in \mathbb{H}$,

$$
\frac{az+b}{cz+d} = f^{-1}(\psi_{\alpha}(f(z))).
$$

(c) Prove that if g is an automorphism of the unit disc, then there exist real numbers a, b, c, d such that $ad - bc = 1$ and so that for any $z \in \mathbb{H}$,

$$
\frac{az+b}{cz+d} = f^{-1} \circ g \circ f(z).
$$

Proof. (a)

$$
\begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix} \begin{pmatrix} e^{i\theta} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & i \\ 1 & i \end{pmatrix}
$$

$$
= 2ie^{i\theta/2} \begin{pmatrix} \cos \theta/2 & \sin \theta/2 \\ -\sin \theta/2 & \cos \theta/2 \end{pmatrix}
$$

so $a = d = \cos \theta/2$, $b = -c = \sin \theta/2$.

(b)

$$
\begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & \alpha \\ -\overline{\alpha} & 1 \end{pmatrix} \begin{pmatrix} -1 & i \\ 1 & i \end{pmatrix}
$$

$$
= 2 \begin{pmatrix} \text{Im}\alpha & -1 + \text{Re}\alpha \\ 1 + \text{Re}\alpha & -\text{Im}\alpha \end{pmatrix}
$$

so

$$
\begin{pmatrix} a & b \ c & d \end{pmatrix} = \frac{2}{1 - |\alpha|^2} \begin{pmatrix} \text{Im}\alpha & -1 + \text{Re}\alpha \\ 1 + \text{Re}\alpha & -\text{Im}\alpha \end{pmatrix}
$$

(c) It is a combination of (a) and (b) because an automorphism of $\mathbb D$ is a composition of a rotation and some ψ_{α} , and because of the closedness of $SL(\mathbb{R})$ under matrix composition.

- 3. We consider conformal mappings to triangles.
	- (a) Show that

$$
\int_0^z z^{-\beta_1} (1-z)^{-\beta_2} dz,
$$

with $0 < \beta_1, \beta_2 < 1$, and $1 < \beta_1 + \beta_2 < 2$, maps \mathbb{H} to a triangle whose vertices are the images of 0, 1, and ∞ , and with angles $\alpha_1 \pi, \alpha_2 \pi$, and $\alpha_3\pi$, where $\alpha_j + \beta_j = 1$ and $\beta_1 + \beta_2 + \beta_3 = 2$.

- (b) What happens when $\beta_1 + \beta_2 = 1$?
- (c) What happens when $\beta_1 + \beta_2 < 1$?
- (d) In (a), the length of the side of the triangle opposite angle $\alpha_i \pi$ is $\frac{\sin(\alpha_j \pi)}{\pi} \Gamma(\alpha_1) \Gamma(\alpha_2) \Gamma(\alpha_3).$
- Proof. (a) By proposition 4.1 (more accurately, by the proof of the proposition, because the integral is not the Schwarz-Christoffel integral, for the difference the signs of the denominators), the map sends the boundary of \mathbb{H} (together with the point $\{\infty\}$) to the triangle described. Let T be the triangle together with the region enclosed. Note that $\mathbb{C} \setminus \partial T$ has two connected components. We know that $f(\mathbb{H})$ is open, and $f(\overline{\mathbb{H}})(\text{including } \infty)$ is compact. So $f(\overline{\mathbb{H}}) \setminus \partial T$ is both closed and open in $\mathbb{C} \setminus \partial T$, and so must be one of the its connected components. But $f(\overline{\mathbb{H}})$ is compact, we thus have $f(\overline{\mathbb{H}}) = T$. Now, since $f(\mathbb{H})$ is open, we have $f(\mathbb{H}) = T \setminus \partial T$.
- (b) It becomes an unbounded region bounded two parallel half ways and one line segment. (like a possibly rotated version of figure 4 in page. 233.)
- (c) It becomes an unbounded region bounded by two non-parallel half ways and one line segment.
- (d) Using the formula of exercise 7, chapter 6,

$$
\int_0^1 t^{-\beta_1} (1-t)^{-\beta_2} dt
$$

=
$$
\frac{\Gamma(\alpha_1)\Gamma(\alpha_2)}{\Gamma(1-\alpha_3)}
$$

=
$$
\frac{\sin \alpha_3 \pi}{\pi} \Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)
$$

similarly, using the substitution $t = 1 - 1/z$ and $t = 1/(1 - z)$, the lengths of the other two sides can be found to be

$$
\frac{\sin \alpha_1 \pi}{\pi} \Gamma(\alpha_1) \Gamma(\alpha_2) \Gamma(\alpha_3) \text{ and } \frac{\sin \alpha_2 \pi}{\pi} \Gamma(\alpha_1) \Gamma(\alpha_2) \Gamma(\alpha_3)
$$

 \Box

4. If P is a simply connected region bounded by a polygon with vertices a_1, \ldots, a_n and angles $\alpha_1 \pi, \ldots, \alpha_n \pi$, and F is a conformal map of the disc $\mathbb D$ to P, then there exist complex numbers B_1, \ldots, B_n on the unit circle, and constants c_1 and c_2 so that

$$
F(z) = c_1 \int_1^z \frac{d\zeta}{(\zeta - B_1)^{\beta_1} \cdots (\zeta - B_n)^{\beta_n}} + c_2
$$

Proof. Applying the transformation

$$
z\mapsto i\frac{1-z}{1+z}
$$

to the Schwarz-Christoffel integral, we get

$$
\int_{1}^{\zeta} \frac{d(i\frac{1-\zeta}{1+\zeta})}{(i\frac{1-\zeta}{1+\zeta})-A_{1})^{\beta_{1}}\cdots(i\frac{1-\zeta}{1+\zeta})-A_{n}}^{\beta_{n}}
$$

$$
=\int_{1}^{\zeta} \frac{-\frac{2i}{(1+\zeta)^{2}}d\zeta}{(i\frac{1-\zeta}{1+\zeta})-A_{1})^{\beta_{1}}\cdots(i\frac{1-\zeta}{1+\zeta})-A_{n}}^{\zeta_{n}}
$$

$$
\int_{1}^{\zeta} \frac{d\zeta}{(\zeta-B_{1})^{\beta_{1}}\cdots(\zeta-B_{n})^{\beta_{n}}}
$$

where in the last line we make use of the condition that $\beta_1+\cdots\beta_n=2\quad \Box$

5. Let, for $0 < k < 1$,

$$
K(k) = \int_0^1 \frac{dx}{((1-x^2)(1-k^2x^2))^{1/2}} \text{ and } K'(k) = \int_0^{1/k} \frac{dx}{((x^2-1)(1-k^2x^2))^{1/2}}
$$

Show that if $\tilde{k}^2 = 1 - k^2$ and $\tilde{k} > 0$, then

$$
K'(k) = K(\tilde{k}).
$$

Proof. Let $x = (1 - \tilde{k}^2 y^2)^{-1/2}$, then $dx = \tilde{k}^2 y (1 - \tilde{k}^2 y^2)^{-3/2} dy$, and

$$
K'(k) = \int_0^{1/k} \frac{dx}{((x^2 - 1)(1 - k^2 x^2))^{1/2}}
$$

=
$$
\int_0^1 \frac{\tilde{k}^2 y (1 - \tilde{k}^2 y^2)^{-3/2} dy}{((\tilde{k}^2 y^2 (1 - \tilde{k}^2 y^2)^{-1})(\tilde{k}^2 (1 - y^2)(1 - \tilde{k}^2 y^2)^{-1}))^{1/2}}
$$

=
$$
\int_0^1 \frac{dy}{((1 - y^2)(1 - \tilde{k}^2 y^2))^{-1/2}}
$$

=
$$
K(\tilde{k})
$$

