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1. (a) Suppose Φ is an automorphism of H that fixes three distinct points
on the real axis. Then Φ is the identity.

(b) Suppose (x1, x2, x3) and (y1, y2, y3) are two pairs of three distinct
points on the real axis with

x1 < x2 < x3 and y1 < y2 < y3.

Prove that there exists (a unique) automorphism Φ of H so that
Φ(xj) = yj , j = 1, 2, 3. The same conclusion holds if y3 < y1 <
y2 or y2 < y3 < y1.

Proof. (a) An automorphism of upper half plane must be of the form

Φ(z) =
az + b

cz + d

with a, b, c, d ∈ R. We now solves for its fixed points:

az + b

cz + d
= z

cz2 + (d− a)z − b = 0

We have a quadractic equation, so there are at most two roots, unless
c = b = 0, d = a, in which case Φ is the identity function.

(b) Uniqueness follows from part (a). For the existence, it suffices to
prove the special case (x1, x2, x3) = (−1, 0, 1). Then we consider the
map

f(w) =
w − y2
w − t

· y3 − t
y3 − y2

We have f(y2) = 0, f(y3) = 1. If f(y1) = −1, then we can take
Φ = f−1. So we need to solve for t ∈ R so that f(y1) = −1:

y1 − y2
y1 − t

· y3 − t
y3 − y2

= −1 (1)

y1 − y2
y3 − y2

= −y1 − t
y3 − t

(2)

It has a unique solution as it turns out to be a linear equation. How-
ever, we want f to preserve H, that is

y3 − t
y3 − y2

det

(
1 −y2
1 −t

)
> 0
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or, equivalently,

y3 − t
y3 − y2

(y2 − t) > 0 (3)

It can be seen from (2) that, for each case considered in the question,
we do have t < y2. For example, when y1 < y2 < y3, we must have
either t < y1 or t > y3, for each case it is clear that (3) is true.

2. Let
f(z) =

i− z
i+ z

and f−1(w) = i
1− w
1 + w

(a) Given θ ∈ R, find real numbers a, b, c, d such that ad − bc = 1, and
so that for any z ∈ H,

az + b

cz + d
= f−1(eiθf(z)).

(b) Given α ∈ D, find real numbers a, b, c, d such that ad − bc = 1, and
so that for any z ∈ H,

az + b

cz + d
= f−1(ψα(f(z))).

(c) Prove that if g is an automorphism of the unit disc, then there exist
real numbers a, b, c, d such that ad−bc = 1 and so that for any z ∈ H,

az + b

cz + d
= f−1 ◦ g ◦ f(z).

Proof. (a) (
−i i
1 1

)(
eiθ 0
0 1

)(
−1 i
1 i

)
=2ieiθ/2

(
cos θ/2 sin θ/2
− sin θ/2 cos θ/2

)
so a = d = cos θ/2, b = −c = sin θ/2.

(b) (
−i i
1 1

)(
−1 α
−α 1

)(
−1 i
1 i

)
=2

(
Imα −1 + Reα

1 + Reα −Imα

)
so (

a b
c d

)
=

2

1− |α|2

(
Imα −1 + Reα

1 + Reα −Imα

)
(c) It is a combination of (a) and (b) because an automorphism of D is a

composition of a rotation and some ψα, and because of the closedness
of SL(R) under matrix composition.
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3. We consider conformal mappings to triangles.

(a) Show that ∫ z

0

z−β1(1− z)−β2dz,

with 0 < β1, β2 < 1, and 1 < β1+β2 < 2, maps H to a triangle whose
vertices are the images of 0, 1, and∞, and with angles α1π, α2π, and
α3π, where αj + βj = 1 and β1 + β2 + β3 = 2.

(b) What happens when β1 + β2 = 1?

(c) What happens when β1 + β2 < 1?

(d) In (a), the length of the side of the triangle opposite angle αjπ is
sin(αjπ)

π Γ(α1)Γ(α2)Γ(α3).

Proof. (a) By proposition 4.1 (more accurately, by the proof of the propo-
sition, because the integral is not the Schwarz-Christoffel integral,
for the difference the signs of the denominators), the map sends the
boundary of H (together with the point {∞}) to the triangle de-
scribed. Let T be the triangle together with the region enclosed.
Note that C \ ∂T has two connected components. We know that
f(H) is open, and f(H)(including ∞) is compact. So f(H) \ ∂T is
both closed and open in C \ ∂T , and so must be one of the its con-
nected components. But f(H) is compact, we thus have f(H) = T .
Now, since f(H) is open, we have f(H) = T \ ∂T.

(b) It becomes an unbounded region bounded two parallel half ways and
one line segment. (like a possibly rotated version of figure 4 in page.
233.)

(c) It becomes an unbounded region bounded by two non-parallel half
ways and one line segment.

(d) Using the formula of exercise 7, chapter 6,∫ 1

0

t−β1(1− t)−β2dt

=
Γ(α1)Γ(α2)

Γ(1− α3)

=
sinα3π

π
Γ(α1)Γ(α2)Γ(α3)

similarly, using the substitution t = 1 − 1/z and t = 1/(1 − z), the
lengths of the other two sides can be found to be

sinα1π

π
Γ(α1)Γ(α2)Γ(α3) and

sinα2π

π
Γ(α1)Γ(α2)Γ(α3)

4. If P is a simply connected region bounded by a polygon with vertices
a1, . . . , an and angles α1π, . . . , αnπ, and F is a conformal map of the disc
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D to P , then there exist complex numbers B1, . . . , Bn on the unit circle,
and constants c1 and c2 so that

F (z) = c1

∫ z

1

dζ

(ζ −B1)β1 · · · (ζ −Bn)βn
+ c2

Proof. Applying the transformation

z 7→ i
1− z
1 + z

to the Schwarz-Christoffel integral, we get∫ ζ

1

d(i 1−ζ1+ζ )

(i 1−ζ1+ζ )−A1)β1 · · · (i 1−ζ1+ζ )−An)βn

=

∫ ζ

1

− 2i
(1+ζ)2 dζ

(i 1−ζ1+ζ )−A1)β1 · · · (i 1−ζ1+ζ )−An)βn∫ ζ

1

dζ

(ζ −B1)β1 · · · (ζ −Bn)βn

where in the last line we make use of the condition that β1+ · · ·βn = 2

5. Let, for 0 < k < 1,

K(k) =

∫ 1

0

dx

((1− x2)(1− k2x2))1/2
and K ′(k) =

∫ 1/k

0

dx

((x2 − 1)(1− k2x2))1/2

Show that if k̃2 = 1− k2 and k̃ > 0, then

K ′(k) = K(k̃).

Proof. Let x = (1− k̃2y2)−1/2, then dx = k̃2y(1− k̃2y2)−3/2dy, and

K ′(k) =

∫ 1/k

0

dx

((x2 − 1)(1− k2x2))1/2

=

∫ 1

0

k̃2y(1− k̃2y2)−3/2dy

((k̃2y2(1− k̃2y2)−1)(k̃2(1− y2)(1− k̃2y2)−1))1/2

=

∫ 1

0

dy

((1− y2)(1− k̃2y2))−1/2

= K(k̃)
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