9962 Let
$$
\vec{r} = y\hat{i} - x\hat{j}
$$
 (same $\vec{r} = x$ or $\hat{i} \in \theta$) have $\vec{r} = x$ or $\hat{i} \in \theta$ (s)
\n $\vec{r} = \sqrt{x^2 + x^2 + x^2}$ (same $\vec{r} = x$ or θ) and $\vec{r} = x^2 + y^2 + z^2 = 9$

\nSimilarly, the sum of $\vec{r} = x$ and $\vec{r} = x$

Proof of Stokes' Thm Special case: S is a graph given by $z = f(x, y)$ over a region R with upward normal \hat{n} R \neq $5: z= f(x,y)$ \overbrace{R} \mathbb{C}^{\prime} Assume C is the boundary of S , and C is the boundary of R (anti-clockwisely aiented wrt the normal of S and the plane respectively Parametrize the graph as $T(x,y) = x\hat{i} + y\hat{j} + f(x,y)\hat{k}$, $(x,y \in R)$ Then as before $\vec{r}_{\times} = \vec{x} + \frac{\vec{a}}{\vec{a}}$ $1 + \frac{3}{5}$
 $\frac{3}{5} + \frac{3}{5}$ $\Rightarrow \quad \vec{r}_x \times \vec{r}_y = -\frac{\partial f}{\partial x} \hat{i} - \frac{\partial f}{\partial y} \hat{j} + \hat{k}$ (up Ward) Hence $\hat{n} = \frac{12}{5} \times \frac{12}{5}$ ι_{κ} $\dot{\circ}$ the upward named of S and $d\sigma = |\vec{r}_x \times \vec{r}_y| dxdy = |\vec{r}_x \times \vec{r}_y| dA$ E area elementof R

$$
L_{\alpha}t \vec{r} = M_{\alpha}^2 + N_{\beta}^2 + L_{\beta}^2
$$
\n
$$
L_{\alpha}t = \iint_{\alpha} (\vec{r} \times \vec{r}) \cdot \hat{n} d\sigma = \iint_{\alpha} (\vec{r} \times \vec{r}) (F(x,y)) \cdot \frac{\vec{r} \times \vec{r}}{|\vec{r} \times \vec{r} \cdot \vec{r}|} \cdot \frac{\vec{r} \times \vec{r}}{|\vec{r} \times \vec{r} \cdot \vec{r}|} dA
$$
\n
$$
= \iint_{R} [(L_{y} - N_{z}) \hat{i} + (M_{z} - L_{x}) \hat{i} + (N_{x} - N_{y}) \hat{k}] \cdot [-\frac{24}{36} \hat{i} - \frac{24}{39} \hat{i} + \hat{k}] dA
$$
\n
$$
= \iint_{R} [-\frac{1}{36} (L_{y} - N_{z}) \hat{i} + (M_{z} - L_{x}) \hat{i} + (N_{x} - N_{y}) \hat{k}] \cdot [-\frac{24}{36} \hat{i} - \frac{24}{39} \hat{i} + \hat{k}] dA
$$
\n
$$
= \iint_{R} [-\frac{1}{36} (L_{y} - N_{z}) - \frac{1}{3} (M_{z} - L_{x}) + (N_{y} - M_{y})] dX dy
$$
\n
$$
= \iint_{R} M dx + N dy + L dy
$$
\n
$$
= \iint_{R} M dx + N dy + L dy
$$
\n
$$
= \iint_{R} (M + L dy) dx + (N + L dy) dy
$$
\n
$$
= \iint_{R} (M + L dy) dx + (N + L dy) dy
$$
\n
$$
= \iint_{R} (M + L dy) dx + (N + L dy) dy
$$
\n
$$
= \iint_{R} (M + L dy) dx + (N + L dy) dy
$$
\n
$$
= \iint_{R} (M + L dy) dx + (N + L dy) dy
$$
\n
$$
= (N + x) y(x) + (N
$$

Theu by Green's Thm

\n
$$
\oint_{C} \vec{r} \cdot d\vec{r} = \oint_{C} (M + Lf_{x})dx + (N + Lf_{y})dy
$$
\n
$$
= \iint_{R} \left[\frac{3}{2x} (N + Lf_{y}) - \frac{3}{8y} (M + Lf_{x}) \right] dA
$$
\n
$$
= \iint_{R} \left[\frac{3}{x} [N(x, y, f(x, y)) + L(x, y, f(x, y)) f_{x}(x, y)] \right] dA
$$
\n
$$
= \iint_{R} [(N_{x} + N_{z} f_{x}) + (L_{x} + L_{z} f_{x}) f_{y} + L f_{y} f_{x}(x, y)]
$$
\n
$$
= \iint_{R} [(N_{x} + N_{z} f_{x}) + (L_{x} + L_{z} f_{x}) f_{y} + L f_{y} f_{x}] dA
$$
\n
$$
= \iint_{R} [N_{y} + M_{z} f_{y}) + (L_{y} + L_{z} f_{y}) f_{x} + L f_{y} f_{y}] dA
$$
\n
$$
= \iint_{R} [-f_{x} (L_{y} - N_{z}) - f_{y} (N_{z} - L_{x}) + (N_{x} - M_{y})] dA
$$
\n
$$
= \iint_{S} (\vec{V} \times \vec{F}) \cdot \hat{M} d\vec{V} \quad \text{Thus proves the case of } C^{2} graph.
$$

General case Divides S into finitely many pieces which are graphs in certain projection This includes S wth many boundary components as in theGreen'sThai

Note: Stokes Thm applies to surfaces like the following

 eg 63 = Let \vec{F} be a vector field such that $\vec{U} \times \vec{F} = 0$ and defined on a region containing the surface S with nuit namal vecter field \hat{n} as in the figure: $-z=2z$ $-C_{c}$ red: nieuted de de la de l
La de la wrt à Chrigontal $\left\langle \right\rangle$ $\Phi^{\vec{k}}$ \overline{z} = \overline{z} $\overline{}$

The boundary C of S has Z components C , and C at the

Find
$$
z = z_1
$$
 is $z = z_2$ respectively.

\nUse both C_1 , C_2 is a $\frac{a}{2}$.

\nLet C_1 , C_2 is a $\frac{a}{2}$.

\nLet C_1 is a $\frac{a}{2}$ is a $\frac{a}{2}$.

\nLet C_2 is a $\frac{a}{2}$ is a $\frac{a}{2}$.

\nLet C_1 is a $\frac{a}{2}$.

\nLet C_2 is a $\frac{a}{2}$.

\nLet $C = C_1 - C_2$.

\nAnd $\frac{a}{2}$ is a $\frac{a}{2}$.

\nLet $C = C_1 - C_2$.

\nAnd $\frac{a}{2}$ is a $\frac{a}{2}$.

\nLet $C = C_1 - C_2$.

\nLet $C = C_1 - C_2$.

\nLet $C = C_1 - C_2$.

\nTherefore, $C = C_1 + C_2$.

\nTherefore, $C = C_1 + C_2$.

\nTherefore, $C = C_2$.

\nTherefore, $C = C_1$.

\nTherefore, $C = C_2$.

\nTherefore, $C = C_1$.

\nLet $C = C_2$.

\nTherefore, $C = C_1$.

\nLet $C = C_2$.

\nLet $C = C_1$.

\nTherefore, $C = C_2$.

\nLet $C = C_1$.

\nLet $C = C_2$.

\nLet $C = C_1$.

\nLet $C = C_2$.

\nLet $C = C_1$.

\nLet $C = C_2$.

\nLet $C = C_1$.

\nTherefore, $C = C_1$.

\nLet $C = C_2$.

\nLet $C = C_1$.

\nLet $C = C_2$.

\n

Proof of ThmIO (3-diii/L core)
\nOnly the "
$$
\leftarrow
$$
" part remains to be proved:
\nBy assumption $\vec{p} = M\hat{x} + N\hat{j} + L\hat{k}$ satisfies the system of
\n \Rightarrow ts in the cor. to the Thm 9, that \vec{a}
\n $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, $\frac{\partial N}{\partial z} = \frac{\partial L}{\partial y}$, and $\frac{\partial L}{\partial x} = \frac{\partial M}{\partial z}$.

i

 ϵ

Hence
$$
TXF = 0
$$

\nlet C be a simple closed curve in a aug-connected region D
\nthen C' can be deformed the a point inside D
\nThe process of deformed the given an
\noriented surface $S \subset D$ such that
\nthe boundary of $S = C$
\nBy Stokes' Thus, $\oint_C \vec{F} \cdot d\vec{r} = \iint_S (\vec{r} \times \vec{F}) \cdot \vec{n} d\sigma$
\n $= 0$ (see $\vec{\tau} \times \vec{F} = 0$)
\nThen $T h m \varphi \Rightarrow \vec{F} \cdot \vec{n}$ converges

Thus 13 (Dioyane Theanu)	
Let \vec{F} be a C ¹ vector field m Ω^{min} $\leq R^5$	
S be a piecewise smooth oriented closed surface.	
Let \hat{n} be the dualward point in the image.	
Let \hat{n} be the dualized point in the image.	
Let \hat{n} be the dualized point in the image.	
Then	\n $\iint \vec{F} \cdot \hat{n} d\sigma = \iiint d\omega \vec{F} dV = \iiint \vec{F} \cdot \vec{F} dV$ \n
so $\frac{1}{2} \vec{F} \cdot \vec{A} \cdot \vec{B} \cdot \vec{B} \cdot \vec{C}$	
29.64	\n $\frac{1}{2} \vec{F} \cdot \vec{A} \cdot \vec{B} \cdot \vec{C}$ \n
$\vec{F} = x \hat{i} + y \hat{j} + z \hat{k}$	
$\vec{G} = \left(x^2 + y^2 + z^2 = \alpha^2 \xi \quad (\alpha > 0)\right)$	
$(x \text{ where } s \text{ and } s \text{ where } s \text{ and } s \text{ are given at } (0,0,0)$	
$D = \text{ solved to be the bounded by } S$.	
So \hat{n} : At $(y, \vec{\pi}) \in S$	
$\hat{n} = \frac{x \hat{i} + y \hat{j} + z \hat{k}}{1 - x^2 + z^2 + z^2} = \frac{1}{\alpha} (x \hat{i} + y \hat{j} + z \hat{k})$ for $\hat{n} = \frac{x \hat{i} + y \hat{j} + z \hat{k}}{1 - x^2 + z^2 + z^2}$	
$\vec{S} = \hat{n} d\sigma = \iint (x \hat$	

$$
= \iint_{S} a \, d\tau = a \, \text{Area}(S) = 4\pi a^3 \quad (\text{clock}')
$$

On the offer Round
\ndipF =
$$
\overrightarrow{\nabla} \cdot \overrightarrow{F} = (\overrightarrow{\lambda} \frac{\partial}{\partial x} + \overrightarrow{j} \frac{\partial}{\partial y} + \overrightarrow{k} \frac{\partial}{\partial z}) \cdot (\overrightarrow{\lambda} \cdot \overrightarrow{\lambda} + \overrightarrow{z} \cdot \overrightarrow{k})
$$

\n= $\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 3$

$$
\Rightarrow \iiint_{D} \text{div} \vec{F} \, dV = \iiint_{D} 3 \, dv = 3 \, \text{Vol}(D) = 3 \cdot \frac{4\pi a^{3}}{3} = 4\pi a^{3}
$$
\n
$$
= \iint_{D} \vec{F} \cdot \hat{n} \, d\sigma \quad \text{#}
$$

965 $\vec{F} = \text{Xainy} \cdot \frac{1}{6} + (\omega y + z) \cdot \frac{1}{3} + z^2 \cdot \hat{k}$	(0,0,1)
0.001	0.001
0.01	0.001
0.021	0.001
0.03, -x-y	
0.04	0.000
0.001	0.000
0.000	0.000
0.001	0.000
0.000	0.000
0.001	0.000
0.000	0.000
0.001	0.000
0.000	0.000
0.001	0.000
0.000	0.000
0.001	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000

Divergence Thin
 \Rightarrow $\iint_{\partial T} \vec{F} \cdot \vec{n} d\sigma = \iiint_{T} d\vec{n} \vec{r} dV$

$$
= \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} 2z \, dz \, dy \, dx
$$

$$
= \frac{1}{12} \left(cluech! \right)
$$

$$
Divergence Thm \Rightarrow \iiint_{D} div (\vec{\tau} \times \vec{F}) dV = \iint_{S_1 \cup S_2} (\vec{\tau} \times \vec{F}) \cdot \hat{v} d\tau = 0
$$
\n
$$
\iiint_{D} div (\vec{\tau} \times \vec{F}) dV = \iint_{S_1 \cup S_2} (\vec{\tau} \times \vec{F}) \cdot \hat{v} d\tau = 0
$$
\n
$$
(true \quad \text{for} \quad \text{if } \omega \text{ and } \omega \
$$

$$
ie. \quad det(curlF) = 0
$$
\n
$$
CourF : \quad CourF = 0
$$
\n
$$
CourF = 0 \Leftrightarrow \exists x(\vec{v}f) = 0
$$