Furthermore, we have

Prop4: (a) If f(x,y) >0 is an integrable function on a closed
rectaugle R, then

$$\iint_{R} f(x,y) dA > 0.$$
(b) If R₁ and R₂ be two closed vectaugles such that
int R₁ ∩ int R₂ = Ø, then

$$\iint_{R_1 \cup R_2} f(x,y) dA = \iint_{R_2} f(x,y) dA + \iint_{R_2} f(x,y) dA = \iint_{R_2} f(x,y) dA + \iint_{R_2} f(x,y) + \iint_{R_2} f(x,y) dA + \iint_{R_2} f(x,y) +$$

Double Integrals over Gaussil Regions
For non-rectangular bounded (closed)
region R, one can define similarly
the concept of "Riemann sum".
There are two ways to form the "sum"
(1) sum over all subrectangles completely inside R
(i), sum over all subrectangles with non-empty intersection
with R.
Or, one can define "ter integrals " as follows
fixy)
i
Ref 2 = let R be a bounded region and fixy be a
function defined on R. For any rectangle R'= R,
define
$$F(x,y) = \begin{cases} 5(x,y) , (x,y) \in R \\ 0 , (x,y) \in R' (R \\ 0 , (x,y) \in R' (R \\ Then the integral of four R is defined by
SI fixy) dA = SS F(xy) dA
R'$$

Remark : The definition is well-defined (i.e. doesn't depend
on the choice of R') : If R'' is another rectangle
sit. R'' > R and
$$F(x,y) = \begin{cases} f(x,y) \\ o \\ (x,y) \in R'' < R' \end{cases}$$

Then (] F(x,y) dA = [] F(x,y) dA
R'' R' R'
(by Prop 4 16))
Prop5 : The propositions 1-4 toold if we replace
"dosed rectangle" by "closed and bounded cogion"
(together with the Prop 2')
Important special types of bounded regions R
Type (1) : R= f(x,y): asxsb, $g_1(x) \le y \le g_2(x_1)$
where g_1 and g_2 are "continum"
functions on $[o,b]$.
 $(g_1 \le g_2, but g_1 = g_2)$
R

Type(2):
$$R = \{(x,y) = t_1(y) \le x \le t_2(y), c \le y \le d\}$$

where t_1 and $t_1 z$ are "continuous"
functions on $[c,d]$
 $(t_1 \le t_1 z, but t_1 = t_1 z)$
 R

$$Th\underline{mz} (Fubini's Thm (Stronger version))$$
Let $f(x_{yy})$ be a continuous function on a closed and bounded
region R.
(1) If R is of type (1) as above, then

$$\iint_{R} f(x_{y}y) dA = \int_{a}^{b} \left[\int_{g_{1}(x)}^{g_{2}(x)} f(x_{y}y) dy \right] dx = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x_{y}y) dy dx$$
(2) If R is of type (2) as above, then

$$\iint_{R} f(x_{y}y) dA = \int_{a}^{cl} \left[\int_{g_{1}(x)}^{\pi_{2}(x)} f(x_{y}y) dx \right] dy = \int_{a}^{d} \int_{g_{1}(x)}^{\pi_{2}(x)} f(x_{y}y) dx dy$$
(3) If $(x_{y}y) dA = \int_{a}^{cl} \left[\int_{g_{1}(x)}^{\pi_{2}(x)} f(x_{y}y) dx \right] dy = \int_{a}^{d} \int_{g_{1}(x)}^{\pi_{2}(x)} f(x_{y}y) dx dy$

Pf: Type (1): Extend fixibly to F(xy)
as in the definition on the rectangle
$$R' = [a,b] \times [c,d]$$
 such that
 $C = uni g_1(x)$
 $d = max g_2(x)$

By definition Z,

$$\iint_{R} F(x,y) dA = \iint_{R'} F(x,y) dA$$

$$= \int_{a}^{b} \left[\int_{C}^{d} F(x,y) dy \right] dx \quad (Fubini (1^{st} form))$$

f containes on
$$R \Rightarrow$$
 F container on R' except possibly on the
boundary (convers)) of R. Hence by Prop 2', F (in fact (F1))
is integrable over R'. And the Fubini theorem (1st form) is
in fact true for "absolutely" integrable functions on a
rectangle.

I

Now
$$F(x,y) = 0$$
 for $y < g_i(x)$ and $y > g_i(x)$,
and $F(x,y) = f(x/y)$ for $g_i(x) < y < g_i(x)$.
 $\therefore \iint_R f(x,y) dA = \int_a^b \left[\int_{g_i(x)}^{g_i(x)} f(x,y) dy \right] dx$.
Type (2) can be proved subilarly.

eq 7 Integrate
$$f(x,y) = 4y+2$$

over the region bounded by $y=x^2$ and $y=2x$.
Solu:
 $f(x,y) = x^2$ read to solve By Fubini's
furthis point $f(x,y) = x^2$
 $y=x^2$ $f(x,y) = x^2$
 $g(x,y) = x^2$ $f(x,y) = x^2$

$$= \int_{0}^{2} \int_{X^{2}}^{2X} (4yr^{2}) dy dX$$

$$= \int_{0}^{2} (-2x^{4} + 6x^{2} + 4x) dx \quad (check!)$$

$$= \frac{56}{6} \quad (check!)$$

$$= \frac{56}{6} \quad (check!)$$

$$= \int_{0}^{4} f(xyy) dA = \int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}} (4y+2) dx dy$$

$$= \int_{0}^{4} (4y+2) (Jy - \frac{y}{2}) dy$$

$$= \dots = \frac{56}{5} \quad (check!)$$

egt: Evaluate
$$\int_{0}^{1} \int_{y}^{x} \frac{\sin x}{x} dx dy$$
.
Solu: Regard $\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} dx dy$ as a double integral
of $\frac{\sin x}{x}$ over the regim
 $y \le x \le 1$ and $0 \le y \le 1$
By Fubini's
 $\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} dx dy = \int_{0}^{1} \int_{0}^{\infty} \frac{\sin x}{x} dy dx$
 $= \int_{0}^{1} \sin x dx = 1 - \cos 1$
Caution: $\int_{1}^{1} \frac{\sin x}{x} dx = \frac{\sin x}{x} dx = 1 - \cos 1$

$$\begin{array}{rcl} \underbrace{\operatorname{Gy}}{P}: \operatorname{Find} & \displaystyle {\displaystyle \int_{R}^{N} x \, dA}, \text{ where } R \text{ is the ragion in the right} \\ \\ \underbrace{\operatorname{flag}}{P} & \operatorname{flag} R & \operatorname{bounded} & \operatorname{by} Y = 0, \text{ and } \operatorname{flag} R & \operatorname{circle} \\ \\ \underbrace{\operatorname{Gree}}{P} & \operatorname{flag} R & \operatorname{cas} \tilde{u}_{1} & \operatorname{flag} R & \operatorname{flag}$$