Solution to assignment 9

(1) (16.3, Q28):
\n
$$
\frac{\partial P}{\partial y} = \cos z = \frac{\partial N}{\partial z}, \frac{\partial M}{\partial z} = 0 = \frac{\partial P}{\partial x}, \frac{\partial N}{\partial x} = \frac{e^x}{y} = \frac{\partial M}{\partial y}
$$
\n
$$
\Rightarrow \mathbf{F} \text{ is conservative.}
$$
\n
$$
\Rightarrow \text{There exists a } f \text{ so that } \mathbf{F} = \nabla f.
$$
\n
$$
\frac{\partial f}{\partial x} = e^x \ln y
$$
\n
$$
\Rightarrow f(x, y, z) = e^x \ln y + g(y, z)
$$
\n
$$
\Rightarrow \frac{\partial f}{\partial y} = \frac{e^x}{y} + \frac{\partial g}{\partial y} = \frac{e^x}{y} + \sin z
$$
\n
$$
\Rightarrow \frac{\partial g}{\partial y} = \sin z
$$
\n
$$
\Rightarrow g(y, z) = y \sin z + h(z)
$$
\n
$$
\Rightarrow f(x, y, z) = e^x \ln y + y \sin z + h(z)
$$
\n
$$
\Rightarrow \frac{\partial f}{\partial z} = y \cos z + h'(z) = y \cos z
$$
\n
$$
\Rightarrow h'(z) = 0
$$
\n
$$
\Rightarrow h(z) = C
$$
\n
$$
\Rightarrow f(x, y, z) = e^x \ln y + y \sin z + C
$$
\n
$$
\Rightarrow \mathbf{F} = \nabla (e^x \ln y + y \sin z).
$$

(2) (16.4, Q14):
\n
$$
M = \tan^{-1} \frac{y}{x}, N = \ln (x^2 + y^2).
$$
\n
$$
\Rightarrow \frac{\partial M}{\partial x} = \frac{-y}{x^2 + y^2}, \frac{\partial M}{\partial y} = \frac{x}{x^2 + y^2}, \frac{\partial N}{\partial x} = \frac{2x}{x^2 + y^2}, \frac{\partial N}{\partial y} = \frac{2y}{x^2 + y^2}
$$
\n
$$
\Rightarrow \text{Flux} = \iint_R \left(\frac{-y}{x^2 + y^2} + \frac{2y}{x^2 + y^2} \right) dx dy = \int_0^{\pi} \int_1^2 \left(\frac{r \sin \theta}{r^2} \right) r dr d\theta = \int_0^{\pi} \sin \theta d\theta = 2
$$
\n
$$
\text{Circ} = \iint_0^{\pi} \left(\frac{2x}{x^2 + y^2} - \frac{x}{x^2 + y^2} \right) dx dy = \int_0^{\pi} \int_1^2 \left(\frac{r \cos \theta}{r^2} \right) r dr d\theta = \int_0^{\pi} \cos \theta d\theta = 0.
$$

(3)
$$
(16.4, Q27)
$$
:
\n $M = x = \cos^3 t, N = y = \sin^3 t$
\n $\Rightarrow dx = -3 \cos^2 t \sin t dt, dy = 3 \sin^2 t \cos t dt$
\n \Rightarrow Area $= \frac{1}{2} \oint_C x dy - y dx$
\n $= \frac{1}{2} \int_0^{2\pi} (3 \sin^2 t \cos^2 t) (\cos^2 t + \sin^2 t) dt$
\n $= \frac{1}{2} \int_0^{2\pi} (3 \sin^2 t \cos^2 t) dt$
\n $= \frac{3}{8} \int_0^{2\pi} \sin^2 2t dt$
\n $= \frac{3}{16} \int_0^{4\pi} \sin^2 u du$
\n $= \frac{3}{16} [\frac{u}{2} - \frac{\sin 2u}{4}]_0^{4\pi}$
\n $= \frac{3}{8} \pi.$

(4)
$$
(16.4, Q39)
$$
:
\n(a) $\nabla f = \left(\frac{2x}{x^2 + y^2}\right) \mathbf{i} + \left(\frac{2y}{x^2 + y^2}\right) \mathbf{j} \Rightarrow M = \frac{2x}{x^2 + y^2}, N = \frac{2y}{x^2 + y^2}.$

M, N are discontinuous at $(0,0)$, we compute $\int_C \nabla f \cdot \mathbf{n} ds$ directly since Green's Theorem does not apply.

Let
$$
x = a \cos t
$$
, $y = a \sin t$
\n $\Rightarrow dx = -a \sin t dt$, $dy = a \cos t dt$
\n $\Rightarrow M = \frac{2}{a} \cos t$, $N = \frac{2}{a} \sin t$, $0 \le t \le 2\pi$.
\nSo $\int_C \nabla f \cdot \mathbf{n} ds = \int_C M dy - N dx$
\n $= \int_0^{2\pi} \left[\left(\frac{2}{a} \cos t \right) (a \cos t) - \left(\frac{2}{a} \sin t \right) (-a \sin t) \right] dt$
\n $= \int_0^{2\pi} 2 \left(\cos^2 t + \sin^2 t \right) dt$
\n $= 4\pi$.

Note that this holds for any $a > 0$, so $\int_C \nabla f \cdot \mathbf{n} ds = 4\pi$ for any circle C centered at (0,0) traversed counterclockwise and $\int_C \nabla f \cdot \mathbf{n} ds = -4\pi$ if C is traversed clockwise.

(b) If K does not enclose the point $(0,0)$ we may apply Green's Theorem: $\int_C \nabla f \cdot \mathbf{n} ds = \int_C M dy - N dx$

$$
= \iint_R \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} \right) dxdy
$$

=
$$
\iint_R \left(\frac{2(y^2 - x^2)}{(x^2 + y^2)^2} + \frac{2(x^2 - y^2)}{(x^2 + y^2)^2} \right) dxdy
$$

=
$$
\iint_R 0 dx dy = 0.
$$

If K does enclose the point $(0, 0)$, we proceed as follows:

Choose a small enough so that the circle C centered at $(0,0)$ of radius a lies entirely within K . Green's Theorem applies to the region R that lies between K and C .

Thus, as before, $0 = \iint_R \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} \right) dx dy = \int_K M dy - N dx + \int_C M dy - N dx$ where K is traversed counterclockwise and C is traversed clockwise. Hence by part (a),

$$
0 = \int_{K} Mdy - Ndx - 4\pi,
$$

$$
\int_{K} \nabla f \cdot \mathbf{n} ds = \int_{K} Mdy - Ndx = 4\pi.
$$

We have shown that $\int_K \nabla f \cdot \mathbf{n} ds =$ $\int 0$ if $(0, 0)$ lies inside K, 4π if $(0,0)$ lies outside K.

Solution to Assignment 9

Supplementary Problems

1. A vector field **F** is called radial if $\mathbf{F}(x, y, z) = f(r)(x, y, z)$, $r = |(x, y, z)|$, for some function f. Show that every radial vector field is conservative. You may assume it is C^1 in \mathbb{R}^3 .

Solution. Let $\Phi(x, y, z)$ be the potential. Since f is radially symmetric, we believe that Φ is also radially symmetric. Let $\Phi(x, y, z) = \varphi(r)$, $r = \sqrt{x^2 + y^2 + z^2}$. We have

$$
\frac{\partial \Phi}{\partial x} = \varphi'(r)\frac{x}{r}, \quad \frac{\partial \Phi}{\partial y} = \varphi'(r)\frac{y}{r}, \quad \frac{\partial \Phi}{\partial z} = \varphi'(r)\frac{z}{r} .
$$

By comparison, we see that Φ is a potential for **F** if $\varphi'(r)/r = f(r)$. Therefore,

$$
\varphi(r) = \int_0^r t f(t) dt ,
$$

is a potential for F.

2. Let $F = (P, Q)$ be a C^1 -vector field in \mathbb{R}^2 away from the origin. Suppose that $P_y = Q_x$. Show that for any simple closed curve C enclosing the origin and oriented in positive direction, one has

$$
\oint_C Pdx + Qdy = \lim_{\varepsilon \to 0} \varepsilon \int_0^{2\pi} \left[-P(\varepsilon \cos \theta, \varepsilon \sin \theta) \sin \theta + Q(\varepsilon \cos \theta, \varepsilon \sin \theta) \cos \theta \right] d\theta.
$$

What happens when C does not enclose the origin?

3. We identity the complex plane with \mathbb{R}^2 by $x+iy \mapsto (x, y)$. A complex-valued function f has its real and imaginary parts respectively given by $u(x, y) = Re f(z)$ and $v(x, y) = Im f(z)$. Note that u and v are real-valued functions. The function f is called differentiable at z if

$$
\frac{df}{dz}(z) = \lim_{w \to 0} \frac{f(z+w) - f(z)}{w} ,
$$

exists.

(a) Show that f is differentiable at z implies that the partial derivatives of u and v exist and $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$, hold. Hint: Take $w = h$, *ih*, where $h \in \mathbb{R}$ and then let $h \rightarrow 0$.

Solution. Identify z with (x, y) . As f is differentiable at z, for real h,

$$
f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \left(\frac{u(x+h,y) - u(x,y)}{h} + i \frac{v(x+h,y) - v(x,y)}{h} \right)
$$

=
$$
\lim_{h \to 0} \frac{u(x+h,y) - u(x,y)}{h} + i \lim_{h \to 0} \frac{v(x+h,y) - v(x,y)}{h}.
$$

Using the fact that $a_n + ib_n \rightarrow a + ib$ if and only if $a_n \rightarrow a$ and $b_n \rightarrow b$ (here $f'(z) = a + ib$, we see that $\frac{\partial u}{\partial x}$ and $\frac{\partial v}{\partial x}$ exists and

$$
\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}(x, y) = f'(z) .
$$

.

Next, we consider purely imaginary ih,

$$
f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{ih} = \lim_{h \to 0} \left(-i \frac{u(x, y+h) - u(x, y)}{h} + \frac{v(x, y+h) - v(x, y)}{h} \right)
$$

=
$$
-i \lim_{h \to 0} \frac{u(x, y+h) - u(x, y)}{h} + \lim_{h \to 0} \frac{v(x, y+h) - v(x, y)}{h}.
$$

As before, $\partial u/\partial y$ and $\partial v/\partial y$ exists and

$$
-i\frac{\partial u}{\partial y}(x,y) + \frac{\partial v}{\partial y}(x,y) = f'(z) .
$$

By comparison, we have $\partial v/\partial y = \partial u/\partial x$ and $-\partial u/\partial y = \partial v/\partial x$ at (x, y) .

(b) Propose a definition of $\int_C f \, dz$, where C is an oriented curve in the plane, in terms of the line integrals involving u and v .

Solution. Formally we have $fdz = (u + iv)(dx + idy) = u dx - v dy + i(v dx + u dy)$. So, we define

$$
\int_C f dz = \int_C u dx - v dy + i \int_C v dx + u dy.
$$

Note that the right hand side are two line integrals.

(c) Suppose that f is differentiable everywhere in \mathbb{C} . Show that for every simple closed curve C ,

$$
\oint_C f\,dz=0\;.
$$

Solution. Use (a) we see that $P = u, Q = -v$ as well as $P = v, Q = u$ satisfy the compatibility conditions. Hence, by Green's theorem,

$$
\oint_C f\,dz = 0\;.
$$

The conclusion in (c) is called Cauchy's theorem. It is a fundamental result in complex analysis.