
Solution to assignment 9

(1) (16.3, Q28):
∂P
∂y

= cos z = ∂N
∂z
, ∂M
∂z

= 0 = ∂P
∂x
, ∂N
∂x

= ex

y
= ∂M

∂y

⇒ F is conservative.
⇒ There exists a f so that F = ∇f .
∂f
∂x

= ex ln y
⇒ f(x, y, z) = ex ln y + g(y, z)
⇒ ∂f

∂y
= ex

y
+ ∂g

∂y
= ex

y
+ sin z

⇒ ∂g
∂y

= sin z

⇒ g(y, z) = y sin z + h(z)
⇒ f(x, y, z) = ex ln y + y sin z + h(z)
⇒ ∂f

∂z
= y cos z + h′(z) = y cos z

⇒ h′(z) = 0
⇒ h(z) = C
⇒ f(x, y, z) = ex ln y + y sin z + C
⇒ F = ∇ (ex ln y + y sin z) .

(2) (16.4, Q14):
M = tan−1 y

x
, N = ln (x2 + y2).

⇒ ∂M
∂x

= −y
x2+y2

, ∂M
∂y

= x
x2+y2

, ∂N
∂x

= 2x
x2+y2

, ∂N
∂y

= 2y
x2+y2

⇒ Flux =
∫∫

R

(
−y

x2+y2
+ 2y

x2+y2

)
dxdy =

∫ π
0

∫ 2

1

(
r sin θ
r2

)
rdrdθ =

∫ π
0
sin θdθ = 2

Circ =
∫∫

0

(
2x

x2+y2
− x

x2+y2

)
dxdy =

∫ π
0

∫ 2

1

(
r cos θ
r2

)
rdrdθ =

∫ π
0
cos θdθ = 0.

(3) (16.4, Q27):
M = x = cos3 t, N = y = sin3 t
⇒ dx = −3 cos2 t sin tdt, dy = 3 sin2 t cos tdt
⇒ Area = 1

2

∮
C
xdy − ydx

= 1
2

∫ 2π

0

(
3 sin2 t cos2 t

) (
cos2 t+ sin2 t

)
dt

= 1
2

∫ 2π

0

(
3 sin2 t cos2 t

)
dt

= 3
8

∫ 2π

0
sin2 2tdt

= 3
16

∫ 4π

0
sin2 udu

= 3
16

[
u
2
− sin 2u

4

]4π
0

= 3
8
π.

(4) (16.4, Q39):

(a) ∇f =
(

2x
x2+y2

)
i+
(

2y
x2+y2

)
j⇒M = 2x

x2+y2
, N = 2y

x2+y2
.

1



2

M,N are discontinuous at (0, 0), we compute
∫
C
∇f · nds directly since

Green’s Theorem does not apply.
Let x = a cos t, y = a sin t
⇒ dx = −a sin tdt, dy = a cos tdt
⇒M = 2

a
cos t, N = 2

a
sin t, 0 ≤ t ≤ 2π.

So
∫
C
∇f · nds =

∫
C
Mdy −Ndx

=
∫ 2x

0

[(
2
a
cos t

)
(a cos t)−

(
2
a
sin t

)
(−a sin t)

]
dt

=
∫ 2π

0
2
(
cos2 t+ sin2 t

)
dt

= 4π.
Note that this holds for any a > 0, so

∫
C
∇f · nds = 4π for any circle C

centered at (0,0) traversed counterclockwise and
∫
C
∇f · nds = −4π if C is

traversed clockwise.
(b) If K does not enclose the point (0,0) we may apply Green’s Theorem:∫
C
∇f · nds =

∫
C
Mdy −Ndx

=
∫∫

R

(
∂M
∂x

+ ∂N
∂y

)
dxdy

=
∫∫

R

(
2(y2−x2)
(x2+y2)2

+
2(x2−y2)
(x2+y2)2

)
dxdy

=
∫∫

R
0dxdy = 0.

If K does enclose the point (0, 0), we proceed as follows:
Choose a small enough so that the circle C centered at (0,0) of radius a lies
entirely within K. Green’s Theorem applies to the region R that lies between
K and C.
Thus, as before, 0 =

∫∫
R

(
∂M
∂x

+ ∂N
∂y

)
dxdy =

∫
K
Mdy−Ndx+

∫
C
Mdy−Ndx

where K is traversed counterclockwise and C is traversed clockwise.
Hence by part (a),

0 =

∫
K

Mdy −Ndx− 4π,∫
K

∇f · nds =
∫
K

Mdy −Ndx = 4π.

We have shown that
∫
K
∇f · nds =

{
0 if (0, 0) lies inside K,

4π if (0, 0) lies outside K.
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Supplementary Problems

1. A vector field F is called radial if F(x, y, z) = f(r)(x, y, z), r = |(x, y, z)|, for some function
f . Show that every radial vector field is conservative. You may assume it is C1 in R3.

Solution. Let Φ(x, y, z) be the potential. Since f is radially symmetric, we believe that
Φ is also radially symmetric. Let Φ(x, y, z) = ϕ(r), r =

√
x2 + y2 + z2. We have

∂Φ

∂x
= ϕ′(r)

x

r
,

∂Φ

∂y
= ϕ′(r)

y

r
,

∂Φ

∂z
= ϕ′(r)

z

r
.

By comparison, we see that Φ is a potential for F if ϕ′(r)/r = f(r). Therefore,

ϕ(r) =

∫ r

0
tf(t) dt ,

is a potential for F.

2. Let F = (P,Q) be a C1-vector field in R2 away from the origin. Suppose that Py = Qx.
Show that for any simple closed curve C enclosing the origin and oriented in positive
direction, one has∮

C
Pdx+Qdy = lim

ε→0
ε

∫ 2π

0
[−P (ε cos θ, ε sin θ) sin θ +Q(ε cos θ, ε sin θ) cos θ] dθ .

What happens when C does not enclose the origin?

3. We identity the complex plane with R2 by x+iy 7→ (x, y). A complex-valued function f has
its real and imaginary parts respectively given by u(x, y) = Ref(z) and v(x, y) = Imf(z).
Note that u and v are real-valued functions. The function f is called differentiable at z if

df

dz
(z) = lim

w→0

f(z + w)− f(z)

w
,

exists.

(a) Show that f is differentiable at z implies that the partial derivatives of u and v exist
and ∂u

∂x = ∂v
∂y and ∂u

∂y = − ∂v
∂x , hold. Hint: Take w = h, ih, where h ∈ R and then let

h→ 0.

Solution. Identify z with (x, y). As f is differentiable at z, for real h,

f ′(z) = lim
h→0

f(z + h)− f(z)

h
= lim

h→0

(
u(x+ h, y)− u(x, y)

h
+ i

v(x+ h, y)− v(x, y)

h

)
= lim

h→0

u(x+ h, y)− u(x, y)

h
+ i lim

h→0

v(x+ h, y)− v(x, y)

h
.

Using the fact that an + ibn → a + ib if and only if an → a and bn → b (here
f ′(z) = a+ ib), we see that ∂u/∂x and ∂v/∂x exists and

∂u

∂x
+ i

∂v

∂x
(x, y) = f ′(z) .
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Next, we consider purely imaginary ih,

f ′(z) = lim
h→0

f(z + h)− f(z)

ih
= lim

h→0

(
−iu(x, y + h)− u(x, y)

h
+
v(x, y + h)− v(x, y)

h

)
= −i lim

h→0

u(x, y + h)− u(x, y)

h
+ lim
h→0

v(x, y + h)− v(x, y)

h
.

As before, ∂u/∂y and ∂v/∂y exists and

−i∂u
∂y

(x, y) +
∂v

∂y
(x, y) = f ′(z) .

By comparison, we have ∂v/∂y = ∂u/∂x and −∂u/∂y = ∂v/∂x at (x, y).

(b) Propose a definition of
∫
C f dz, where C is an oriented curve in the plane, in terms

of the line integrals involving u and v.

Solution. Formally we have fdz = (u + iv)(dx + idy) = udx − vdy + i(vdx + udy).
So, we define ∫

C
f dz =

∫
C
udx− vdy + i

∫
C
vdx+ udy .

Note that the right hand side are two line integrals.

(c) Suppose that f is differentiable everywhere in C. Show that for every simple closed
curve C, ∮

C
f dz = 0 .

Solution. Use (a) we see that P = u,Q = −v as well as P = v,Q = u satisfy the
compatibility conditions. Hence, by Green’s theorem,∮

C
f dz = 0 .

.

The conclusion in (c) is called Cauchy’s theorem. It is a fundamental result in complex
analysis.


