MATH1010 University Mathematics Limits of sequences

- 1. Let $a_n =$ 1 $\frac{1}{n^2+1}$ + 1 $\frac{1}{n^2+2}$ + 1 $n^2 + 3$ $+\cdots+\frac{1}{2}$ $\frac{1}{n^2 + n}$. Find $\lim_{n \to \infty} a_n$.
- 2. Let $a_n =$ 1 n $+$ 1 $n+1$ $+$ 1 $n + 2$ $+\cdots+\frac{1}{2}$ $\frac{1}{2n-1}$. Prove that a_n is convergent and $\lim_{n\to\infty} a_n > 0$.
- 3. Prove that $k(n k + 1) \ge n$ for any $1 \le k \le n$. Hence prove that $\lim_{n\to\infty}$ $\frac{1}{\sqrt[n]{n!}}$ $= 0.$

Solution:

1. For any $n = 1, 2, 3, \ldots$, we have

$$
0 < \frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \frac{1}{n^2 + 3} + \dots + \frac{1}{n^2 + n}
$$

\n
$$
\leq \frac{1}{n^2} + \frac{1}{n^2} + \frac{1}{n^2} + \dots + \frac{1}{n^2}
$$

\n
$$
= \frac{1}{n}.
$$

Now

$$
\lim_{n \to \infty} \frac{1}{n} = 0.
$$

By squeeze theorem, we have

$$
\lim_{n \to \infty} \left(\frac{1}{n^2 + 1} + \frac{1}{n^2 + 2} + \frac{1}{n^2 + 3} + \dots + \frac{1}{n^2 + n} \right) = 0.
$$

2. Observe that

$$
a_{n+1} - a_n
$$

= $\left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n+1}\right) - \left(\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n-1}\right)$
= $\frac{1}{2n} + \frac{1}{2n+1} - \frac{1}{n}$
 $\leq \frac{1}{2n} + \frac{1}{2n} - \frac{1}{n}$
= 0.

Thus a_n is strictly decreasing. Now

$$
a_n = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n-1} > \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{1}{2}
$$

It follows by monotone convergence theorem that a_n is convergent. Moreover we have $\lim_{n\to\infty} a_n \geq \frac{1}{2}$ 2 $> 0.$ Remark: It can be proved that $\lim_{n\to\infty} a_n = \ln 2 \approx 0.6931$.

3. For any $1 \leq k \leq n$, we have

$$
k(n-k+1) - n = kn - k2 + k - n
$$

= kn - n - k² + k
= n(k - 1) - k(k - 1)
= (n - k)(k - 1)
 $\geq 0.$

Hence for any positive integer n ,

$$
\frac{1}{\sqrt[n]{n!}} = \frac{1}{(n!)^{\frac{1}{n}}}
$$
\n
$$
= \frac{1}{((1 \cdot n) \times (2 \cdot (n-1)) \times (3 \cdot (n-2)) \times \dots \times (n \cdot 1))^{\frac{1}{2n}}}
$$
\n
$$
\leq \frac{1}{(n \times n \times n \times \dots \times n)^{\frac{1}{2n}}}
$$
\n
$$
= \frac{1}{(n^n)^{\frac{1}{2n}}}
$$
\n
$$
= \frac{1}{\sqrt{n}}.
$$

Thus

$$
0<\frac{1}{\sqrt[n]{n!}}\leq \frac{1}{\sqrt{n}}.
$$

Now

$$
\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.
$$

It follows by squeeze theorem that

$$
\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0.
$$