MATH1010 University Mathematics Mean value theorem

1. Prove that for any $x > 0$,

$$
1 + \frac{x}{2} - \frac{x^2}{8} < \sqrt{1 + x} < 1 + \frac{x}{2}.
$$

2. Prove that for any $x \in (0, \frac{\pi}{2})$ $\frac{\pi}{2}$,

$$
2\ln \sec x \leq \sin x \tan x.
$$

3. Prove that for any $x > 0$,

$$
x - \frac{x^3}{3} < \tan^{-1} x.
$$

4. Prove that for any $\theta > 0$,

$$
1 - \frac{\theta^2}{2} < \cos \theta < 1 - \frac{\theta^2}{2} + \frac{\theta^4}{24}.
$$

5. Let a_1, a_2, \ldots, a_n be real numbers. Prove that there exists $0 < x < 1$ such that

$$
a_1x + a_2x^2 + \dots + a_nx^n = \frac{a_1}{2} + \frac{a_2}{3} + \dots + \frac{a_n}{n+1}
$$

- 6. Let $f(x)$ and $g(x)$ be functions which are continuous on [a, b] and differentiable in (a, b) . Suppose $f(a) = f(b) = 0$.
	- (a) By considering the function $e^x f(x)$, show that there exists $\xi \in$ (a, b) such that $f'(\xi) + f(\xi) = 0$.
	- (b) Prove that there exits $\eta \in (a, b)$ such that $f'(\eta) + g'(\eta)f(\eta) = 0$.
- 7. Let $f(x)$ be function, continuous on $[0, +\infty)$, differentiable on $(0, +\infty)$ which satisfies $f'(x) \leq f(x)$ for any $x > 0$. Prove that $f(x) \leq f(0)e^x$ for any $x > 0$.
- 8. Let $f(x)$ be a function which is twice differentiable on R. Let a, b, c be real numbers with $a < b < c$. Let

$$
F(x) = f(x) - \frac{(x-b)(x-c)}{(a-b)(a-c)}f(a) - \frac{(x-c)(x-a)}{(b-c)(b-a)}f(b) - \frac{(x-b)(x-a)}{(c-b)(c-a)}f(c).
$$

- (a) Prove that there exists $\zeta \in (a, b)$ such that $F'(\zeta) = 0$.
- (b) Prove that there exists $\eta \in (a, c)$ such that

$$
\frac{f''(\eta)}{2} = \frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-c)(b-a)} + \frac{f(c)}{(c-b)(c-a)}.
$$

- 9. Suppose $0 < a < b$.
	- (a) Prove that

$$
(1 + \ln a)(b - a) < b \ln b - a \ln a < (1 + \ln b)(b - a).
$$

(b) Prove that there exists $c \in (a, b)$ such that

$$
ae^b - be^a = (b - a)(c - 1)e^c.
$$

10. Let $f(x)$ be a function such that $f''(x) < 0$ for any x.

- (a) Prove that $f'(x + 1) < f(x + 1) f(x) < f'(x)$ for any x.
- (b) Prove that

$$
f'(1) + f'(2) + f'(3) < f(3) - f(0) < f'(0) + f'(1) + f'(2).
$$

11. Let I be an open interval and $a, b \in I$ with $a < b$. If f is differentiable on I and if λ is a number between $f'(a)$ and $f'(b)$, show that there is at least one point $c \in (a, b)$ such that $f'(c) = \lambda$.

(Hint: You may start with defining a function $f_a(t) = \begin{cases} f'(a) & \text{if } t = a \\ f(t)-f(a) & \text{if } t \neq a \end{cases}$ $f(t)-f(a)$ $\frac{1-f(a)}{t-a}$ if $t \neq a$.

12. Let $f(t)$ be a function on $\mathbb R$ with $f''(t) \geq 0$ for any $t \in \mathbb R$. Let $p, q > 1$ with $\frac{1}{1}$ p $^{+}$ 1 q $= 1$.

(a) For any
$$
x, y \in \mathbb{R}
$$
 with $x < y$, let $z = \frac{x}{p} + \frac{y}{q}$.

- (i) Prove that $x < z < y$.
- (ii) Prove that there exists $x<\xi< z$ such that

$$
f'(\xi) = \frac{q(f(z) - f(x))}{y - x}.
$$

(iii) Prove that

$$
f(z) \le \frac{f(x)}{p} + \frac{f(y)}{q}.
$$

- (b) Let $a, b > 0$.
	- (i) Prove that

$$
f(\ln(ab)) \le \frac{f(p\ln a)}{p} + \frac{f(q\ln b)}{q}.
$$

(ii) Prove that

$$
ab \leq \frac{a^p}{p} + \frac{b^q}{q}.
$$

13. Let $f(x)$ be a function which is differentiable on $(0, +\infty)$. Suppose

- $f'(x) > 0$ for any $x > 0$, and
- $\lim_{x \to 0^+} f(x) = 0$
- (a) Prove that $f(x) > 0$ for any $x > 0$.
- (b) Prove that $(1 + x) \ln(1 + x) x \ln x > 0$ for any $x > 0$.
- (c) Let $a > 0$ and $g(t) = \frac{\ln(1 + a^t)}{t}$ t . Prove that $g'(t) < 0$ for any $t > 0$.
- (d) Prove that $(u^{q}+v^{q})^{\frac{1}{q}} < (u^{p}+v^{p})^{\frac{1}{p}}$ for any $u, v, p, q > 0$ with $p < q$.

Solution:

1. Let
$$
f(x) = 1 + \frac{x}{2} - \sqrt{1 + x}
$$
. Then $f(0) = 0$ and

$$
f'(x) = \frac{1}{2} - \frac{1}{2\sqrt{1 + x}} > 0
$$

for $x > 0$. Thus $1 + \frac{x}{2}$ 2 > √ $\overline{1+x}$ for $x > 0$. On the other hand, let

$$
g(x) = \sqrt{1+x} - 1 - \frac{x}{2} + \frac{x^2}{8}.
$$
 Then $g(0) = 0$ and

$$
g'(x) = \frac{1}{2\sqrt{1+x}} - \frac{1}{2} + \frac{x}{4}
$$

$$
> \frac{1}{2(1+\frac{x}{2})} - \frac{1}{2} + \frac{x}{4}
$$

$$
= \frac{4 - 2(2+x) + x(2+x)}{4(2+x)}
$$

$$
= \frac{x^2}{4(2+x)}
$$

$$
> 0
$$

for $x > 0$. Thus $1 + \frac{x}{2}$ 2 $-\frac{x^2}{2}$ 8 \lt √ $\overline{1+x}$ for $x>0$.

2. Let $f(x) = \sin x \tan x - 2 \ln \sec x$. Then $f(0) = 0$ and for any $x \in (0, \frac{\pi}{2})$ $\frac{\pi}{2}$,

$$
f'(x) = \cos x \tan x + \sin x \sec^2 x - \frac{2 \sec x \tan x}{\sec x}
$$

= $\sin x + \frac{\sin x}{\cos^2 x} - \frac{2 \sin x}{\cos x}$
= $\frac{\sin x (\cos^2 x + 1 - 2 \cos x)}{\cos^2 x}$
= $\frac{\sin x (1 - \cos x)^2}{\cos^2 x}$
> 0

for $x \in (0, \frac{\pi}{2})$ $\frac{\pi}{2}$). Thus $\sin x \tan x > 2 \ln \sec x$ for $x \in (0, \frac{\pi}{2})$ $\frac{\pi}{2}$.

3. Let
$$
f(x) = \tan^{-1} x - x + \frac{x^3}{3}
$$
. Then $f(0) = 0$ and
\n
$$
f'(x) = \frac{1}{1+x^2} - 1 + x^2 = \frac{1 - (1+x^2) + x^2(1+x^2)}{1+x^2} = \frac{x^4}{1+x^2} > 0
$$
\nfor $x > 0$. Thus $f(x) > 0$ for $x > 0$. Therefore $\tan^{-1} x > x - \frac{x^3}{3}$ for

3 \mathbf{r} $x > 0$.

4. Let $f(\theta) = \cos \theta - 1 + \frac{\theta^2}{2}$ 2 . Then $f'(\theta) = \theta - \sin \theta$ $f''(\theta) = 1 - \cos \theta$

Now $f'(0) = 0$ and $f''(\theta) > 0$ for $\theta > 0$ implies that $f'(\theta) > 0$ for $\theta > 0$. Combining this with $f(0) = 0$, we have $f(\theta) > 0$ for $\theta > 0$. Thus $\cos \theta > 1 - \frac{\theta^2}{2}$ 2 for $\theta > 0$. On the other hand, let $g(\theta) = 1 - \frac{\theta^2}{2}$ 2 $+$ θ^4 24 $-\cos\theta$. Then

$$
g'(\theta) = -\theta + \frac{\theta^3}{6} + \sin \theta
$$

$$
g''(\theta) = -1 + \frac{\theta^2}{2} + \cos \theta
$$

Now $g'(0) = 0$ and we have proved that $g''(\theta) = \cos \theta - 1 + \frac{\theta^2}{2}$ 2 > 0 for any $\theta > 0$. Thus $g'(\theta) > 0$ for any $\theta > 0$. Combining this with $g(0) = 0$, we see that $g(\theta) > 0$ for any $\theta > 0$. Therefore $1 - \frac{\theta^2}{2}$ 2 $+$ θ^4 24 $\cos \theta$ for $\theta > 0$.

5. Let
$$
f(t) = \frac{a_1 t^2}{2} + \frac{a_2 t^3}{3} + \dots + \frac{a_n t^{n+1}}{n+1}
$$
. Then

$$
f'(t) = a_1 t + a_2 t^2 + \dots + a_n t^n.
$$

By mean value theorem, there exists $0 < x < 1$ such that

$$
f'(x) = \frac{f(1) - f(0)}{1 - 0}
$$

$$
a_1x + a_2x^2 + \dots + a_nx^n = \frac{a_1}{2} + \frac{a_2}{3} + \dots + \frac{a_n}{n + 1}.
$$

6. Suppose $f(a) = f(b) = 0$.

(a) Let $h(x) = e^x f(x)$ which is continuous on [a, b] and differentiable on (a, b) . Then $h(a) = h(b) = 0$ and $h'(x) = e^x(f'(x) + f(x))$. By Rolle's theorem, there exists $a < \xi < b$ such that

$$
h'(\xi) = e^{\xi} (f'(\xi) + f(\xi)) = 0
$$

which implies $f'(\xi) + f(\xi) = 0$ since $e^{\xi} > 0$.

(b) Let $p(x) = e^{g(x)}f(x)$ which is continuous on [a, b] and differentiable on (a, b) . Then $p(a) = p(b) = 0$ and $p'(x) = e^{g(x)}(f'(x) +$ $g'(x) f(x)$. By Rolle's theorem, there exists $a < \eta < b$ such that

$$
p'(\eta) = e^{g(\eta)}(f'(\eta) + g'(\eta)f(\eta)) = 0
$$

which implies $f'(\eta) + g'(\eta)f(\eta) = 0$ since $e^{g(\eta)} > 0$.

7. Let $g(x) = e^{-x} f(x) - f(0)$. Then $g(0) = 0$ and

$$
g'(x) = -e^{-x}f(x) + e^{-x}f'(x) \le -e^{-x}f(x) + e^{-x}f(x) = 0
$$

for any $x > 0$. Thus $g(x) = e^{-x} f(x) - f(0) \le 0$ for any $x > 0$ which implies $f(x) \le f(0)e^x$ for any $x > 0$.

8. (a) Note that

$$
F(a) = f(a) - \frac{(a-b)(a-c)}{(a-b)(a-c)}f(a) = 0
$$

$$
F(b) = f(b) - \frac{(b-c)(b-a)}{(b-c)(b-a)}f(b) = 0.
$$

By Rolle's theorem, there exists $\zeta \in (a, b)$ such that $F'(\zeta) = 0$.

(b) Note that

$$
F'(x)
$$

= $f'(x) - \frac{(2x - (b + c))f(a)}{(a - b)(a - c)} - \frac{(2x - (c + a))f(b)}{(b - c)(b - a)} - \frac{(2x - (a + b))f(c)}{(c - b)(c - a)}$

$$
F''(x)
$$

= $f''(x) - \frac{2f(a)}{(a - b)(a - c)} - \frac{2f(b)}{(b - c)(b - a)} - \frac{2f(c)}{(c - b)(c - a)}$

By (a), there exists $\zeta \in (a, b)$ such that $F'(\zeta) = 0$. Similarly, there exists $\xi \in (b, c)$ such that $F'(\xi) = 0$. By applying Rolle's theorem to $F'(x)$, there exists $a < \zeta < \eta < \xi < b$ such that

$$
F''(\eta) = 0
$$

$$
f''(\eta) - \frac{2f(a)}{(a-b)(a-c)} - \frac{2f(b)}{(b-c)(b-a)} - \frac{2f(c)}{(c-b)(c-a)} = 0
$$

$$
\frac{f''(\eta)}{2} = \frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-c)(b-a)} + \frac{f(c)}{(c-b)(c-a)}
$$

9. (a) Let $f(x) = x \ln x$ for $x > 0$. By mean value theorem, there exists $\xi \in (a, b)$ such that

$$
f'(\xi)\frac{f(b) - f(a)}{b - a}
$$

Since $f'(x) = 1 + \ln x$ is strictly increasing, we have

$$
f'(a) < f'(\xi) < f'(b) \n f'(a) < \frac{f(b) - f(a)}{b - a} < f'(b) \n 1 + \ln a < \frac{b \ln b - a \ln a}{b - a} < 1 + \ln b \n (1 + \ln a)(b - a) < b \ln b - a \ln a < (1 + \ln b)(b - a)
$$

(b) Let $f(x) = xe^{\frac{1}{x}}$. Then

$$
f'(x) = e^{\frac{1}{x}} + xe^{\frac{1}{x}} \left(-\frac{1}{x^2} \right) = \left(1 - \frac{1}{x} \right) e^{\frac{1}{x}}
$$

Applying mean value theorem to $f(x)$ on $(\frac{1}{b}, \frac{1}{a})$ $\frac{1}{a}$), there exists $a <$ $c < b$ such that

$$
\frac{f(\frac{1}{a}) - f(\frac{1}{b})}{\frac{1}{a} - \frac{1}{b}} = f'(\frac{1}{c})
$$
\n
$$
\frac{e^{a}}{\frac{a}{a} - \frac{b}{b}} = (1 - c)e^{c}
$$
\n
$$
\frac{be^{a} - ae^{b}}{b - a} = (1 - c)e^{c}
$$
\n
$$
ae^{b} - be^{a} = (b - a)(c - 1)e^{c}
$$

10. (a) For any x, by applying mean value theorem to $f(x)$ on $(x, x+1)$, there exists $x < \xi < x + 1$ such that

$$
f'(\xi) = \frac{f(x+1) - f(x)}{x+1-x} = f(x+1) - f(x)
$$

Since $f'(x) < 0$ for any x, $f'(x)$ is strictly decreasing. Thus $f'(x)$ 1) < $f'(\xi)$ < $f'(x)$ which implies $f'(x+1)$ < $f(x+1) - f(x)$ < $f'(x)$.

(b) By (a),

$$
f'(1) < f(1) - f(0) < f'(0)
$$
\n
$$
f'(2) < f(2) - f(1) < f'(1)
$$
\n
$$
f'(3) < f(3) - f(2) < f'(2)
$$

Adding up the above inequalities, we have

$$
f'(1) + f'(2) + f'(3) < f(3) - f(0) < f'(0) + f'(1) + f'(2).
$$

11. Observe that at least one of the following holds. Either λ lies between $f'(a)$ and $\frac{f(b)-f(a)}{b}$ $b - a$, or λ lies between $f'(b)$ and $\frac{f(b) - f(a)}{b}$ $b - a$. Suppose λ lies between $f'(a)$ and $\frac{f(b) - f(a)}{b}$ $b - a$. Define

$$
f_a(t) = \begin{cases} f'(a) & \text{if } t = a \\ \frac{f(t) - f(a)}{t - a} & \text{if } t \neq a \end{cases}
$$

Then $f_a(t)$ is continuous on $[a, b]$ since

$$
\lim_{t \to 0} f_a(t) = \lim_{t \to 0} \frac{f(t) - f(a)}{t - a} = f'(a) = f_a(a).
$$

Also $f_a(t)$ is differentiable at any $t \in (a, b)$ because $f(x)$ is differentiable at any $x \in (a, b)$. Since λ lies between $f_a(a) = f'(a)$ and $f_a(b) =$ $f(b) - f(a)$ $\frac{f(x)}{b-a}$, by applying intermediate value theorem to $f_a(t)$ on $[a, b]$, there exists $\eta \in [a, b]$ such that $f_a(\eta) = \frac{f(\eta) - f(a)}{\eta - a}$ $= \lambda$. Applying mean value theorem to $f(x)$ on $[a, \eta]$, there exists $\xi \in (a, \eta)$ such that $f'(\xi) = \frac{f(\eta) - f(a)}{g(\xi)}$ $\eta - a$ $=\lambda$.

Suppose λ lies between $f'(b)$ and $\frac{f(b)-f(a)}{b}$ $b - a$. Define

$$
f_b(t) = \begin{cases} f'(b) & \text{if } t = b\\ \frac{f(b) - f(t)}{b - t} & \text{if } t \neq b \end{cases}
$$

The rest of the argument is more or less the same.

12. (a) (i)

$$
x = \frac{x}{p} + \frac{x}{q} < \frac{x}{p} + \frac{y}{q} < \frac{y}{p} + \frac{y}{q} = y.
$$

(ii) Applying mean value theorem to $f(x)$ on (x, z) , there exists $x < \xi < z$ such that

$$
f'(\xi) = \frac{f(z) - f(x)}{z - x}.
$$

Now

$$
z - x = \frac{x}{p} + \frac{y}{q} - \left(\frac{x}{p} + \frac{x}{q}\right) = \frac{y - x}{q}.
$$

Hence

$$
f'(\xi) = \frac{q(f(z) - f(x))}{y - x}.
$$

(iii) Applying mean value theorem to $f(x)$ on (z, y) , there exists $z < \eta < y$ such that

$$
f'(\eta) = \frac{p(f(y) - f(z))}{y - x}.
$$

Since $f''(t) \geq 0$ for any t and $\xi < \eta$, we have $f'(\xi) \leq f'(\eta)$ and therefore

$$
\frac{q(f(z) - f(x))}{y - x} \le \frac{p(f(y) - f(z))}{y - x}
$$

$$
(p + q)f(z) \le qf(x) + pf(y)
$$

$$
f(z) \le \frac{qf(x)}{p + q} + \frac{pf(y)}{p + q}
$$

$$
= \frac{f(x)}{p} + \frac{f(y)}{q}
$$

(b) (i) Without loss of generality, we may assume $p \ln a < q \ln b$. Take $x = p \ln a$, $y = q \ln b$ and

$$
z = \frac{x}{p} + \frac{y}{q} = \ln a + \ln b = \ln(ab).
$$

By $(a)(iii)$, we have

$$
f(\ln(ab)) \le \frac{f(p\ln a)}{p} + \frac{f(q\ln b)}{q}.
$$

(ii) Let $f(t) = e^t$. Then $f''(t) = e^t > 0$ for any $t \in \mathbb{R}$. By (b)(i), we have

$$
e^{\ln(ab)} \leq \frac{e^{p\ln a}}{p} + \frac{e^{q\ln b}}{q}
$$

$$
ab \leq \frac{a^p}{p} + \frac{b^q}{q}.
$$

13. (a) Consider the function $g(x)$ defined by

$$
g(x) = \begin{cases} f(x) & \text{if } x > 0 \\ 0 & \text{if } x = 0 \end{cases}.
$$

Then $\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} f(x) = 0 = g(0)$. Thus $g(x)$ is continuous on $[0, +\infty)$. Moreover, $g'(x) = f'(x) > 0$ for any $x > 0$. For any $x > 0$, applying mean value theorem to $g(x)$ on $[0, x]$, there exist $0 < \xi < x$ such that

$$
\frac{g(x) - g(0)}{x - 0} = g'(\xi)
$$

$$
\frac{f(x) - 0}{x} = f'(\xi)
$$

which implies $f(x) = f'(\xi)x > 0$.

(b) Consider $f(x) = (1+x) \ln(1+x) - x \ln x$. Then

$$
f'(x) = \ln(1+x) + 1 - \ln x - 1 = \ln(1+x) - \ln x > 0
$$

for any $x > 0$ and

$$
\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (1+x) \ln(1+x) - x \ln x
$$

\n
$$
= -\lim_{x \to 0^+} x \ln x
$$

\n
$$
= -\lim_{t \to +\infty} \frac{\ln(\frac{1}{t})}{t}
$$

\n
$$
= \lim_{t \to +\infty} \frac{\ln t}{t}
$$

\n
$$
= 0.
$$

By (a), we have $f(x) = (1+x) \ln(1+x) - x \ln x > 0$ for any $x > 0$.

(c) Let
$$
a > 0
$$
 and $g(t) = \frac{\ln(1 + a^t)}{t}$. Then for any $t > 0$,
\n
$$
g'(t) = \frac{\frac{t}{1 + a^t} \cdot a^t \ln a - \ln(1 + a^t)}{t^2}
$$
\n
$$
= \frac{a^t \ln(a^t) - (1 + a^t) \ln(1 + a^t)}{t^2 (1 + a^t)}
$$
\n
$$
< 0
$$

where the last inequality follows from (b) since $a^t > 0$ for any $t>0.$

(d) Let $a =$ \overline{v} u . Note that $g(x)$ is continuous on $[p, q]$ and differentiable on (p, q) . By the mean value theorem, there exists $\xi \in (p, q)$ such that

$$
\frac{g(q) - g(p)}{q - p} = g'(\xi) < 0
$$

$$
\frac{\ln(1 + a^q)}{q} - \frac{\ln(1 + a^p)}{p} < 0
$$

$$
\ln(1 + a^q)^{\frac{1}{q}} < \ln(1 + a^p)^{\frac{1}{p}}
$$

$$
(1 + a^q)^{\frac{1}{q}} < (1 + a^p)^{\frac{1}{p}}
$$

$$
\left(1 + \frac{v^q}{u^q}\right)^{\frac{1}{q}} < \left(1 + \frac{v^p}{u^p}\right)^{\frac{1}{p}}
$$

$$
(u^q + v^q)^{\frac{1}{q}} < (u^p + v^p)^{\frac{1}{p}}.
$$