MATH1010 University Mathematics Mean value theorem

1. Prove that for any x > 0,

$$1 + \frac{x}{2} - \frac{x^2}{8} < \sqrt{1+x} < 1 + \frac{x}{2}.$$

2. Prove that for any $x \in (0, \frac{\pi}{2})$,

$$2\ln\sec x \le \sin x \tan x.$$

3. Prove that for any x > 0,

$$x - \frac{x^3}{3} < \tan^{-1} x.$$

4. Prove that for any $\theta > 0$,

$$1 - \frac{\theta^2}{2} < \cos \theta < 1 - \frac{\theta^2}{2} + \frac{\theta^4}{24}$$

5. Let a_1, a_2, \ldots, a_n be real numbers. Prove that there exists 0 < x < 1 such that

$$a_1x + a_2x^2 + \dots + a_nx^n = \frac{a_1}{2} + \frac{a_2}{3} + \dots + \frac{a_n}{n+1}$$

- 6. Let f(x) and g(x) be functions which are continuous on [a, b] and differentiable in (a, b). Suppose f(a) = f(b) = 0.
 - (a) By considering the function $e^x f(x)$, show that there exists $\xi \in (a, b)$ such that $f'(\xi) + f(\xi) = 0$.
 - (b) Prove that there exits $\eta \in (a, b)$ such that $f'(\eta) + g'(\eta)f(\eta) = 0$.
- 7. Let f(x) be function, continuous on $[0, +\infty)$, differentiable on $(0, +\infty)$ which satisfies $f'(x) \leq f(x)$ for any x > 0. Prove that $f(x) \leq f(0)e^x$ for any x > 0.
- 8. Let f(x) be a function which is twice differentiable on \mathbb{R} . Let a, b, c be real numbers with a < b < c. Let

$$F(x) = f(x) - \frac{(x-b)(x-c)}{(a-b)(a-c)}f(a) - \frac{(x-c)(x-a)}{(b-c)(b-a)}f(b) - \frac{(x-b)(x-a)}{(c-b)(c-a)}f(c).$$

- (a) Prove that there exists $\zeta \in (a, b)$ such that $F'(\zeta) = 0$.
- (b) Prove that there exists $\eta \in (a, c)$ such that

$$\frac{f''(\eta)}{2} = \frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-c)(b-a)} + \frac{f(c)}{(c-b)(c-a)}.$$

- 9. Suppose 0 < a < b.
 - (a) Prove that

$$(1 + \ln a)(b - a) < b \ln b - a \ln a < (1 + \ln b)(b - a).$$

(b) Prove that there exists $c \in (a, b)$ such that

$$ae^{b} - be^{a} = (b - a)(c - 1)e^{c}$$
.

10. Let f(x) be a function such that f''(x) < 0 for any x.

- (a) Prove that f'(x+1) < f(x+1) f(x) < f'(x) for any x.
- (b) Prove that

$$f'(1) + f'(2) + f'(3) < f(3) - f(0) < f'(0) + f'(1) + f'(2).$$

11. Let I be an open interval and $a, b \in I$ with a < b. If f is differentiable on I and if λ is a number between f'(a) and f'(b), show that there is at least one point $c \in (a, b)$ such that $f'(c) = \lambda$.

(Hint: You may start with defining a function $f_a(t) = \begin{cases} f'(a) & \text{if } t = a \\ \frac{f(t) - f(a)}{t - a} & \text{if } t \neq a \end{cases}$

12. Let f(t) be a function on \mathbb{R} with $f''(t) \ge 0$ for any $t \in \mathbb{R}$. Let p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

(a) For any
$$x, y \in \mathbb{R}$$
 with $x < y$, let $z = \frac{x}{p} + \frac{y}{q}$.

- (i) Prove that x < z < y.
- (ii) Prove that there exists $x < \xi < z$ such that

$$f'(\xi) = \frac{q(f(z) - f(x))}{y - x}$$

(iii) Prove that

$$f(z) \le \frac{f(x)}{p} + \frac{f(y)}{q}.$$

- (b) Let a, b > 0.
 - (i) Prove that

$$f(\ln(ab)) \le \frac{f(p\ln a)}{p} + \frac{f(q\ln b)}{q}.$$

(ii) Prove that

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

13. Let f(x) be a function which is differentiable on $(0, +\infty)$. Suppose

- f'(x) > 0 for any x > 0, and
- $\lim_{x \to 0^+} f(x) = 0$
- (a) Prove that f(x) > 0 for any x > 0.
- (b) Prove that $(1 + x) \ln(1 + x) x \ln x > 0$ for any x > 0.
- (c) Let a > 0 and $g(t) = \frac{\ln(1+a^t)}{t}$. Prove that g'(t) < 0 for any t > 0.

(d) Prove that
$$(u^q + v^q)^{\frac{1}{q}} < (u^p + v^p)^{\frac{1}{p}}$$
 for any $u, v, p, q > 0$ with $p < q$.

Solution:

1. Let
$$f(x) = 1 + \frac{x}{2} - \sqrt{1+x}$$
. Then $f(0) = 0$ and
 $f'(x) = \frac{1}{2} - \frac{1}{2\sqrt{1+x}} > 0$

for x > 0. Thus $1 + \frac{x}{2} > \sqrt{1+x}$ for x > 0. On the other hand, let

$$g(x) = \sqrt{1+x} - 1 - \frac{x}{2} + \frac{x^2}{8}. \text{ Then } g(0) = 0 \text{ and}$$

$$g'(x) = \frac{1}{2\sqrt{1+x}} - \frac{1}{2} + \frac{x}{4}$$

$$> \frac{1}{2(1+\frac{x}{2})} - \frac{1}{2} + \frac{x}{4}$$

$$= \frac{4 - 2(2+x) + x(2+x)}{4(2+x)}$$

$$= \frac{x^2}{4(2+x)}$$

$$> 0$$

for x > 0. Thus $1 + \frac{x}{2} - \frac{x^2}{8} < \sqrt{1+x}$ for x > 0.

2. Let $f(x) = \sin x \tan x - 2 \ln \sec x$. Then f(0) = 0 and for any $x \in (0, \frac{\pi}{2})$,

$$f'(x) = \cos x \tan x + \sin x \sec^2 x - \frac{2 \sec x \tan x}{\sec x}$$
$$= \sin x + \frac{\sin x}{\cos^2 x} - \frac{2 \sin x}{\cos x}$$
$$= \frac{\sin x (\cos^2 x + 1 - 2 \cos x)}{\cos^2 x}$$
$$= \frac{\sin x (1 - \cos x)^2}{\cos^2 x}$$
$$> 0$$

for $x \in (0, \frac{\pi}{2})$. Thus $\sin x \tan x > 2 \ln \sec x$ for $x \in (0, \frac{\pi}{2})$.

3. Let
$$f(x) = \tan^{-1} x - x + \frac{x^3}{3}$$
. Then $f(0) = 0$ and
 $f'(x) = \frac{1}{1+x^2} - 1 + x^2 = \frac{1 - (1+x^2) + x^2(1+x^2)}{1+x^2} = \frac{x^4}{1+x^2} > 0$
for $x > 0$. Thus $f(x) > 0$ for $x > 0$. Therefore $\tan^{-1} x > x - \frac{x^3}{3}$ fo

or 3 x > 0.

4. Let $f(\theta) = \cos \theta - 1 + \frac{\theta^2}{2}$. Then $f'(\theta) = \theta - \sin \theta$ $f''(\theta) = 1 - \cos \theta$

Now f'(0) = 0 and $f''(\theta) > 0$ for $\theta > 0$ implies that $f'(\theta) > 0$ for $\theta > 0$. Combining this with f(0) = 0, we have $f(\theta) > 0$ for $\theta > 0$. Thus $\cos \theta > 1 - \frac{\theta^2}{2}$ for $\theta > 0$. On the other hand, let $g(\theta) = 1 - \frac{\theta^2}{2} + \frac{\theta^4}{24} - \cos \theta$. Then

$$g'(\theta) = -\theta + \frac{\theta^3}{6} + \sin \theta$$
$$g''(\theta) = -1 + \frac{\theta^2}{2} + \cos \theta$$

Now g'(0) = 0 and we have proved that $g''(\theta) = \cos \theta - 1 + \frac{\theta^2}{2} > 0$ for any $\theta > 0$. Thus $g'(\theta) > 0$ for any $\theta > 0$. Combining this with g(0) = 0, we see that $g(\theta) > 0$ for any $\theta > 0$. Therefore $1 - \frac{\theta^2}{2} + \frac{\theta^4}{24} > \cos \theta$ for $\theta > 0$.

5. Let $f(t) = \frac{a_1 t^2}{2} + \frac{a_2 t^3}{3} + \dots + \frac{a_n t^{n+1}}{n+1}$. Then $f'(t) = a_1 t + a_2 t^2 + \dots + a_n t^n$.

By mean value theorem, there exists 0 < x < 1 such that

$$f'(x) = \frac{f(1) - f(0)}{1 - 0}$$
$$a_1 x + a_2 x^2 + \dots + a_n x^n = \frac{a_1}{2} + \frac{a_2}{3} + \dots + \frac{a_n}{n + 1}.$$

6. Suppose f(a) = f(b) = 0.

(a) Let $h(x) = e^x f(x)$ which is continuous on [a, b] and differentiable on (a, b). Then h(a) = h(b) = 0 and $h'(x) = e^x (f'(x) + f(x))$. By Rolle's theorem, there exists $a < \xi < b$ such that

$$h'(\xi) = e^{\xi} (f'(\xi) + f(\xi)) = 0$$

which implies $f'(\xi) + f(\xi) = 0$ since $e^{\xi} > 0$.

(b) Let $p(x) = e^{g(x)}f(x)$ which is continuous on [a, b] and differentiable on (a, b). Then p(a) = p(b) = 0 and $p'(x) = e^{g(x)}(f'(x) + g'(x)f(x))$. By Rolle's theorem, there exists $a < \eta < b$ such that

$$p'(\eta) = e^{g(\eta)}(f'(\eta) + g'(\eta)f(\eta)) = 0$$

which implies $f'(\eta) + g'(\eta)f(\eta) = 0$ since $e^{g(\eta)} > 0$.

7. Let $g(x) = e^{-x}f(x) - f(0)$. Then g(0) = 0 and

$$g'(x) = -e^{-x}f(x) + e^{-x}f'(x) \le -e^{-x}f(x) + e^{-x}f(x) = 0$$

for any x > 0. Thus $g(x) = e^{-x}f(x) - f(0) \le 0$ for any x > 0 which implies $f(x) \le f(0)e^x$ for any x > 0.

8. (a) Note that

$$F(a) = f(a) - \frac{(a-b)(a-c)}{(a-b)(a-c)}f(a) = 0$$

$$F(b) = f(b) - \frac{(b-c)(b-a)}{(b-c)(b-a)}f(b) = 0.$$

By Rolle's theorem, there exists $\zeta \in (a, b)$ such that $F'(\zeta) = 0$.

(b) Note that

$$F'(x) = f'(x) - \frac{(2x - (b + c))f(a)}{(a - b)(a - c)} - \frac{(2x - (c + a))f(b)}{(b - c)(b - a)} - \frac{(2x - (a + b))f(c)}{(c - b)(c - a)}$$

$$F''(x) = f''(x) - \frac{2f(a)}{(a - b)(a - c)} - \frac{2f(b)}{(b - c)(b - a)} - \frac{2f(c)}{(c - b)(c - a)}$$

By (a), there exists $\zeta \in (a, b)$ such that $F'(\zeta) = 0$. Similarly, there exists $\xi \in (b, c)$ such that $F'(\xi) = 0$. By applying Rolle's theorem to F'(x), there exists $a < \zeta < \eta < \xi < b$ such that

$$F''(\eta) = 0$$

$$f''(\eta) - \frac{2f(a)}{(a-b)(a-c)} - \frac{2f(b)}{(b-c)(b-a)} - \frac{2f(c)}{(c-b)(c-a)} = 0$$

$$\frac{f''(\eta)}{2} = \frac{f(a)}{(a-b)(a-c)} + \frac{f(b)}{(b-c)(b-a)} + \frac{f(c)}{(c-b)(c-a)}$$

9. (a) Let $f(x) = x \ln x$ for x > 0. By mean value theorem, there exists $\xi \in (a, b)$ such that

$$f'(\xi)\frac{f(b) - f(a)}{b - a}$$

Since $f'(x) = 1 + \ln x$ is strictly increasing, we have

$$\begin{array}{rcl} f'(a) &< f'(\xi) &< f'(b) \\ f'(a) &< \frac{f(b) - f(a)}{b - a} &< f'(b) \\ 1 + \ln a &< \frac{b \ln b - a \ln a}{b - a} &< 1 + \ln b \\ (1 + \ln a)(b - a) &< b \ln b - a \ln a &< (1 + \ln b)(b - a) \end{array}$$

(b) Let $f(x) = xe^{\frac{1}{x}}$. Then

$$f'(x) = e^{\frac{1}{x}} + xe^{\frac{1}{x}} \left(-\frac{1}{x^2}\right) = \left(1 - \frac{1}{x}\right)e^{\frac{1}{x}}$$

Applying mean value theorem to f(x) on $(\frac{1}{b}, \frac{1}{a})$, there exists a < c < b such that

$$\frac{f(\frac{1}{a}) - f(\frac{1}{b})}{\frac{1}{a} - \frac{1}{b}} = f'(\frac{1}{c})$$
$$\frac{\frac{e^{a}}{a} - \frac{e^{b}}{b}}{\frac{1}{a} - \frac{1}{b}} = (1 - c)e^{c}$$
$$\frac{be^{a} - ae^{b}}{b - a} = (1 - c)e^{c}$$
$$ae^{b} - be^{a} = (b - a)(c - 1)e^{c}$$

10. (a) For any x, by applying mean value theorem to f(x) on (x, x + 1), there exists $x < \xi < x + 1$ such that

$$f'(\xi) = \frac{f(x+1) - f(x)}{x+1 - x} = f(x+1) - f(x)$$

Since f'(x) < 0 for any x, f'(x) is strictly decreasing. Thus $f'(x + 1) < f'(\xi) < f'(x)$ which implies f'(x + 1) < f(x + 1) - f(x) < f'(x).

(b) By (a),

$$f'(1) < f(1) - f(0) < f'(0)$$

$$f'(2) < f(2) - f(1) < f'(1)$$

$$f'(3) < f(3) - f(2) < f'(2)$$

Adding up the above inequalities, we have

$$f'(1) + f'(2) + f'(3) < f(3) - f(0) < f'(0) + f'(1) + f'(2).$$

11. Observe that at least one of the following holds. Either λ lies between f'(a) and $\frac{f(b) - f(a)}{b - a}$, or λ lies between f'(b) and $\frac{f(b) - f(a)}{b - a}$. Suppose λ lies between f'(a) and $\frac{f(b) - f(a)}{b - a}$. Define

$$f_a(t) = \begin{cases} f'(a) & \text{if } t = a\\ \frac{f(t) - f(a)}{t - a} & \text{if } t \neq a \end{cases}$$

Then $f_a(t)$ is continuous on [a, b] since

$$\lim_{t \to 0} f_a(t) = \lim_{t \to 0} \frac{f(t) - f(a)}{t - a} = f'(a) = f_a(a).$$

Also $f_a(t)$ is differentiable at any $t \in (a, b)$ because f(x) is differentiable at any $x \in (a, b)$. Since λ lies between $f_a(a) = f'(a)$ and $f_a(b) = \frac{f(b) - f(a)}{b - a}$, by applying intermediate value theorem to $f_a(t)$ on [a, b], there exists $\eta \in [a, b]$ such that $f_a(\eta) = \frac{f(\eta) - f(a)}{\eta - a} = \lambda$. Applying mean value theorem to f(x) on $[a, \eta]$, there exists $\xi \in (a, \eta)$ such that $f'(\xi) = \frac{f(\eta) - f(a)}{\eta - a} = \lambda$.

Suppose λ lies between f'(b) and $\frac{f(b) - f(a)}{b - a}$. Define

$$f_b(t) = \begin{cases} f'(b) & \text{if } t = b\\ \frac{f(b) - f(t)}{b - t} & \text{if } t \neq b \end{cases}$$

The rest of the argument is more or less the same.

12. (a) (i)

$$x = \frac{x}{p} + \frac{x}{q} < \frac{x}{p} + \frac{y}{q} < \frac{y}{p} + \frac{y}{q} = y.$$

(ii) Applying mean value theorem to f(x) on (x, z), there exists $x < \xi < z$ such that

$$f'(\xi) = \frac{f(z) - f(x)}{z - x}.$$

Now

$$z - x = \frac{x}{p} + \frac{y}{q} - \left(\frac{x}{p} + \frac{x}{q}\right) = \frac{y - x}{q}.$$

Hence

$$f'(\xi) = \frac{q(f(z) - f(x))}{y - x}.$$

(iii) Applying mean value theorem to f(x) on (z, y), there exists $z < \eta < y$ such that

$$f'(\eta) = \frac{p(f(y) - f(z))}{y - x}.$$

Since $f''(t) \ge 0$ for any t and $\xi < \eta$, we have $f'(\xi) \le f'(\eta)$ and therefore

$$\frac{q(f(z) - f(x))}{y - x} \leq \frac{p(f(y) - f(z))}{y - x}$$
$$(p+q)f(z) \leq qf(x) + pf(y)$$
$$f(z) \leq \frac{qf(x)}{p+q} + \frac{pf(y)}{p+q}$$
$$= \frac{f(x)}{p} + \frac{f(y)}{q}$$

(b) (i) Without loss of generality, we may assume $p \ln a < q \ln b$. Take $x = p \ln a, y = q \ln b$ and

$$z = \frac{x}{p} + \frac{y}{q} = \ln a + \ln b = \ln(ab).$$

By (a)(iii), we have

$$f(\ln(ab)) \le \frac{f(p\ln a)}{p} + \frac{f(q\ln b)}{q}.$$

(ii) Let $f(t) = e^t$. Then $f''(t) = e^t > 0$ for any $t \in \mathbb{R}$. By (b)(i), we have

$$e^{\ln(ab)} \leq \frac{e^{p\ln a}}{p} + \frac{e^{q\ln b}}{q}$$
$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}.$$

13. (a) Consider the function g(x) defined by

$$g(x) = \begin{cases} f(x) & \text{if } x > 0\\ 0 & \text{if } x = 0 \end{cases}.$$

Then $\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} f(x) = 0 = g(0)$. Thus g(x) is continuous on $[0, +\infty)$. Moreover, g'(x) = f'(x) > 0 for any x > 0. For any x > 0, applying mean value theorem to g(x) on [0, x], there exist $0 < \xi < x$ such that

$$\frac{g(x) - g(0)}{x - 0} = g'(\xi)$$
$$\frac{f(x) - 0}{x} = f'(\xi)$$

which implies $f(x) = f'(\xi)x > 0$.

(b) Consider $f(x) = (1+x)\ln(1+x) - x\ln x$. Then

$$f'(x) = \ln(1+x) + 1 - \ln x - 1 = \ln(1+x) - \ln x > 0$$

for any x > 0 and

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (1+x) \ln(1+x) - x \ln x$$
$$= -\lim_{x \to 0^+} x \ln x$$
$$= -\lim_{t \to +\infty} \frac{\ln(\frac{1}{t})}{t}$$
$$= \lim_{t \to +\infty} \frac{\ln t}{t}$$
$$= 0.$$

By (a), we have $f(x) = (1+x)\ln(1+x) - x\ln x > 0$ for any x > 0.

(c) Let
$$a > 0$$
 and $g(t) = \frac{\ln(1+a^t)}{t}$. Then for any $t > 0$,
 $g'(t) = \frac{\frac{t}{1+a^t} \cdot a^t \ln a - \ln(1+a^t)}{t^2}$
 $= \frac{a^t \ln(a^t) - (1+a^t) \ln(1+a^t)}{t^2(1+a^t)}$
 < 0

where the last inequality follows from (b) since $a^t > 0$ for any t > 0.

(d) Let $a = \frac{v}{u}$. Note that g(x) is continuous on [p, q] and differentiable on (p, q). By the mean value theorem, there exists $\xi \in (p, q)$ such that

$$\begin{aligned} \frac{g(q) - g(p)}{q - p} &= g'(\xi) < 0\\ \frac{\ln(1 + a^q)}{q} - \frac{\ln(1 + a^p)}{p} &< 0\\ \ln(1 + a^q)^{\frac{1}{q}} &< \ln(1 + a^p)^{\frac{1}{p}}\\ (1 + a^q)^{\frac{1}{q}} &< (1 + a^p)^{\frac{1}{p}}\\ \left(1 + \frac{v^q}{u^q}\right)^{\frac{1}{q}} &< \left(1 + \frac{v^p}{u^p}\right)^{\frac{1}{p}}\\ (u^q + v^q)^{\frac{1}{q}} &< (u^p + v^p)^{\frac{1}{p}}. \end{aligned}$$