
MATH1010 University Mathematics
Mean value theorem

1. Prove that for any x > 0,

1 +
x

2
− x2

8
<
√

1 + x < 1 +
x

2
.

2. Prove that for any x ∈ (0, π
2
),

2 ln secx ≤ sinx tanx.

3. Prove that for any x > 0,

x− x3

3
< tan−1 x.

4. Prove that for any θ > 0,

1− θ2

2
< cos θ < 1− θ2

2
+
θ4

24
.

5. Let a1, a2, . . . , an be real numbers. Prove that there exists 0 < x < 1
such that

a1x+ a2x
2 + · · ·+ anx

n =
a1
2

+
a2
3

+ · · ·+ an
n+ 1

6. Let f(x) and g(x) be functions which are continuous on [a, b] and dif-
ferentiable in (a, b). Suppose f(a) = f(b) = 0.

(a) By considering the function exf(x), show that there exists ξ ∈
(a, b) such that f ′(ξ) + f(ξ) = 0.

(b) Prove that there exits η ∈ (a, b) such that f ′(η) + g′(η)f(η) = 0.

7. Let f(x) be function, continuous on [0,+∞), differentiable on (0,+∞)
which satisfies f ′(x) ≤ f(x) for any x > 0. Prove that f(x) ≤ f(0)ex

for any x > 0.

8. Let f(x) be a function which is twice differentiable on R. Let a, b, c be
real numbers with a < b < c. Let

F (x) = f(x)−(x− b)(x− c)
(a− b)(a− c)

f(a)−(x− c)(x− a)

(b− c)(b− a)
f(b)−(x− b)(x− a)

(c− b)(c− a)
f(c).
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(a) Prove that there exists ζ ∈ (a, b) such that F ′(ζ) = 0.

(b) Prove that there exists η ∈ (a, c) such that

f ′′(η)

2
=

f(a)

(a− b)(a− c)
+

f(b)

(b− c)(b− a)
+

f(c)

(c− b)(c− a)
.

9. Suppose 0 < a < b.

(a) Prove that

(1 + ln a)(b− a) < b ln b− a ln a < (1 + ln b)(b− a).

(b) Prove that there exists c ∈ (a, b) such that

aeb − bea = (b− a)(c− 1)ec.

10. Let f(x) be a function such that f ′′(x) < 0 for any x.

(a) Prove that f ′(x+ 1) < f(x+ 1)− f(x) < f ′(x) for any x.

(b) Prove that

f ′(1) + f ′(2) + f ′(3) < f(3)− f(0) < f ′(0) + f ′(1) + f ′(2).

11. Let I be an open interval and a, b ∈ I with a < b. If f is differentiable
on I and if λ is a number between f ′(a) and f ′(b), show that there is
at least one point c ∈ (a, b) such that f ′(c) = λ.

(Hint: You may start with defining a function fa(t) =

{
f ′(a) if t = a
f(t)−f(a)

t−a if t 6= a
.

12. Let f(t) be a function on R with f ′′(t) ≥ 0 for any t ∈ R. Let p, q > 1

with
1

p
+

1

q
= 1.

(a) For any x, y ∈ R with x < y, let z =
x

p
+
y

q
.

(i) Prove that x < z < y.

(ii) Prove that there exists x < ξ < z such that

f ′(ξ) =
q(f(z)− f(x))

y − x
.
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(iii) Prove that

f(z) ≤ f(x)

p
+
f(y)

q
.

(b) Let a, b > 0.

(i) Prove that

f(ln(ab)) ≤ f(p ln a)

p
+
f(q ln b)

q
.

(ii) Prove that

ab ≤ ap

p
+
bq

q
.

13. Let f(x) be a function which is differentiable on (0,+∞). Suppose

• f ′(x) > 0 for any x > 0, and

• lim
x→0+

f(x) = 0

(a) Prove that f(x) > 0 for any x > 0.

(b) Prove that (1 + x) ln(1 + x)− x lnx > 0 for any x > 0.

(c) Let a > 0 and g(t) =
ln(1 + at)

t
. Prove that g′(t) < 0 for any

t > 0.

(d) Prove that (uq+vq)
1
q < (up+vp)

1
p for any u, v, p, q > 0 with p < q.

Solution:

1. Let f(x) = 1 +
x

2
−
√

1 + x. Then f(0) = 0 and

f ′(x) =
1

2
− 1

2
√

1 + x
> 0

for x > 0. Thus 1 +
x

2
>
√

1 + x for x > 0. On the other hand, let
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g(x) =
√

1 + x− 1− x

2
+
x2

8
. Then g(0) = 0 and

g′(x) =
1

2
√

1 + x
− 1

2
+
x

4

>
1

2(1 + x
2
)
− 1

2
+
x

4

=
4− 2(2 + x) + x(2 + x)

4(2 + x)

=
x2

4(2 + x)
> 0

for x > 0. Thus 1 +
x

2
− x2

8
<
√

1 + x for x > 0.

2. Let f(x) = sin x tanx−2 ln secx. Then f(0) = 0 and for any x ∈ (0, π
2
),

f ′(x) = cosx tanx+ sinx sec2 x− 2 secx tanx

secx

= sin x+
sinx

cos2 x
− 2 sinx

cosx

=
sinx(cos2 x+ 1− 2 cosx)

cos2 x

=
sinx(1− cosx)2

cos2 x
> 0

for x ∈ (0, π
2
). Thus sinx tanx > 2 ln secx for x ∈ (0, π

2
).

3. Let f(x) = tan−1 x− x+
x3

3
. Then f(0) = 0 and

f ′(x) =
1

1 + x2
− 1 + x2 =

1− (1 + x2) + x2(1 + x2)

1 + x2
=

x4

1 + x2
> 0

for x > 0. Thus f(x) > 0 for x > 0. Therefore tan−1 x > x − x3

3
for

x > 0.
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4. Let f(θ) = cos θ − 1 +
θ2

2
. Then

f ′(θ) = θ − sin θ

f ′′(θ) = 1− cos θ

Now f ′(0) = 0 and f ′′(θ) > 0 for θ > 0 implies that f ′(θ) > 0 for θ > 0.
Combining this with f(0) = 0, we have f(θ) > 0 for θ > 0. Thus

cos θ > 1−θ
2

2
for θ > 0. On the other hand, let g(θ) = 1−θ

2

2
+
θ4

24
−cos θ.

Then

g′(θ) = −θ +
θ3

6
+ sin θ

g′′(θ) = −1 +
θ2

2
+ cos θ

Now g′(0) = 0 and we have proved that g′′(θ) = cos θ − 1 +
θ2

2
> 0 for

any θ > 0. Thus g′(θ) > 0 for any θ > 0. Combining this with g(0) = 0,

we see that g(θ) > 0 for any θ > 0. Therefore 1− θ2

2
+
θ4

24
> cos θ for

θ > 0.

5. Let f(t) =
a1t

2

2
+
a2t

3

3
+ · · ·+ ant

n+1

n+ 1
. Then

f ′(t) = a1t+ a2t
2 + · · ·+ ant

n.

By mean value theorem, there exists 0 < x < 1 such that

f ′(x) =
f(1)− f(0)

1− 0

a1x+ a2x
2 + · · ·+ anx

n =
a1
2

+
a2
3

+ · · ·+ an
n+ 1

.

6. Suppose f(a) = f(b) = 0.

(a) Let h(x) = exf(x) which is continuous on [a, b] and differentiable
on (a, b). Then h(a) = h(b) = 0 and h′(x) = ex(f ′(x) + f(x)). By
Rolle’s theorem, there exists a < ξ < b such that

h′(ξ) = eξ(f ′(ξ) + f(ξ)) = 0

which implies f ′(ξ) + f(ξ) = 0 since eξ > 0.
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(b) Let p(x) = eg(x)f(x) which is continuous on [a, b] and differen-
tiable on (a, b). Then p(a) = p(b) = 0 and p′(x) = eg(x)(f ′(x) +
g′(x)f(x)). By Rolle’s theorem, there exists a < η < b such that

p′(η) = eg(η)(f ′(η) + g′(η)f(η)) = 0

which implies f ′(η) + g′(η)f(η) = 0 since eg(η) > 0.

7. Let g(x) = e−xf(x)− f(0). Then g(0) = 0 and

g′(x) = −e−xf(x) + e−xf ′(x) ≤ −e−xf(x) + e−xf(x) = 0

for any x > 0. Thus g(x) = e−xf(x) − f(0) ≤ 0 for any x > 0 which
implies f(x) ≤ f(0)ex for any x > 0.

8. (a) Note that

F (a) = f(a)− (a− b)(a− c)
(a− b)(a− c)

f(a) = 0

F (b) = f(b)− (b− c)(b− a)

(b− c)(b− a)
f(b) = 0.

By Rolle’s theorem, there exists ζ ∈ (a, b) such that F ′(ζ) = 0.

(b) Note that

F ′(x)

= f ′(x)− (2x− (b+ c))f(a)

(a− b)(a− c)
− (2x− (c+ a))f(b)

(b− c)(b− a)
− (2x− (a+ b))f(c)

(c− b)(c− a)

F ′′(x)

= f ′′(x)− 2f(a)

(a− b)(a− c)
− 2f(b)

(b− c)(b− a)
− 2f(c)

(c− b)(c− a)

By (a), there exists ζ ∈ (a, b) such that F ′(ζ) = 0. Similarly, there
exists ξ ∈ (b, c) such that F ′(ξ) = 0. By applying Rolle’s theorem
to F ′(x), there exists a < ζ < η < ξ < b such that

F ′′(η) = 0

f ′′(η)− 2f(a)

(a− b)(a− c)
− 2f(b)

(b− c)(b− a)
− 2f(c)

(c− b)(c− a)
= 0

f ′′(η)

2
=

f(a)

(a− b)(a− c)
+

f(b)

(b− c)(b− a)
+

f(c)

(c− b)(c− a)
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9. (a) Let f(x) = x lnx for x > 0. By mean value theorem, there exists
ξ ∈ (a, b) such that

f ′(ξ)
f(b)− f(a)

b− a
Since f ′(x) = 1 + lnx is strictly increasing, we have

f ′(a) < f ′(ξ) < f ′(b)

f ′(a) <
f(b)− f(a)

b− a
< f ′(b)

1 + ln a <
b ln b− a ln a

b− a
< 1 + ln b

(1 + ln a)(b− a) < b ln b− a ln a < (1 + ln b)(b− a)

(b) Let f(x) = xe
1
x . Then

f ′(x) = e
1
x + xe

1
x

(
− 1

x2

)
=

(
1− 1

x

)
e

1
x

Applying mean value theorem to f(x) on (1
b
, 1
a
), there exists a <

c < b such that

f( 1
a
)− f(1

b
)

1
a
− 1

b

= f ′(
1

c
)

ea

a
− eb

b
1
a
− 1

b

= (1− c)ec

bea − aeb

b− a
= (1− c)ec

aeb − bea = (b− a)(c− 1)ec

10. (a) For any x, by applying mean value theorem to f(x) on (x, x+ 1),
there exists x < ξ < x+ 1 such that

f ′(ξ) =
f(x+ 1)− f(x)

x+ 1− x
= f(x+ 1)− f(x)

Since f ′(x) < 0 for any x, f ′(x) is strictly decreasing. Thus f ′(x+
1) < f ′(ξ) < f ′(x) which implies f ′(x + 1) < f(x + 1) − f(x) <
f ′(x).
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(b) By (a),

f ′(1) < f(1)− f(0) < f ′(0)

f ′(2) < f(2)− f(1) < f ′(1)

f ′(3) < f(3)− f(2) < f ′(2)

Adding up the above inequalities, we have

f ′(1) + f ′(2) + f ′(3) < f(3)− f(0) < f ′(0) + f ′(1) + f ′(2).

11. Observe that at least one of the following holds. Either λ lies between

f ′(a) and
f(b)− f(a)

b− a
, or λ lies between f ′(b) and

f(b)− f(a)

b− a
. Sup-

pose λ lies between f ′(a) and
f(b)− f(a)

b− a
. Define

fa(t) =

f
′(a) if t = a
f(t)− f(a)

t− a
if t 6= a

Then fa(t) is continuous on [a, b] since

lim
t→0

fa(t) = lim
t→0

f(t)− f(a)

t− a
= f ′(a) = fa(a).

Also fa(t) is differentiable at any t ∈ (a, b) because f(x) is differentiable
at any x ∈ (a, b). Since λ lies between fa(a) = f ′(a) and fa(b) =
f(b)− f(a)

b− a
, by applying intermediate value theorem to fa(t) on [a, b],

there exists η ∈ [a, b] such that fa(η) =
f(η)− f(a)

η − a
= λ. Applying

mean value theorem to f(x) on [a, η], there exists ξ ∈ (a, η) such that

f ′(ξ) =
f(η)− f(a)

η − a
= λ.

Suppose λ lies between f ′(b) and
f(b)− f(a)

b− a
. Define

fb(t) =

{
f ′(b) if t = b
f(b)−f(t)

b−t if t 6= b

The rest of the argument is more or less the same.
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12. (a) (i)

x =
x

p
+
x

q
<
x

p
+
y

q
<
y

p
+
y

q
= y.

(ii) Applying mean value theorem to f(x) on (x, z), there exists
x < ξ < z such that

f ′(ξ) =
f(z)− f(x)

z − x
.

Now

z − x =
x

p
+
y

q
−
(
x

p
+
x

q

)
=
y − x
q

.

Hence

f ′(ξ) =
q(f(z)− f(x))

y − x
.

(iii) Applying mean value theorem to f(x) on (z, y), there exists
z < η < y such that

f ′(η) =
p(f(y)− f(z))

y − x
.

Since f ′′(t) ≥ 0 for any t and ξ < η, we have f ′(ξ) ≤ f ′(η)
and therefore

q(f(z)− f(x))

y − x
≤ p(f(y)− f(z))

y − x
(p+ q)f(z) ≤ qf(x) + pf(y)

f(z) ≤ qf(x)

p+ q
+
pf(y)

p+ q

=
f(x)

p
+
f(y)

q

(b) (i) Without loss of generality, we may assume p ln a < q ln b. Take
x = p ln a, y = q ln b and

z =
x

p
+
y

q
= ln a+ ln b = ln(ab).

By (a)(iii), we have

f(ln(ab)) ≤ f(p ln a)

p
+
f(q ln b)

q
.
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(ii) Let f(t) = et. Then f ′′(t) = et > 0 for any t ∈ R. By (b)(i),
we have

eln(ab) ≤ ep ln a

p
+
eq ln b

q

ab ≤ ap

p
+
bq

q
.

13. (a) Consider the function g(x) defined by

g(x) =

{
f(x) if x > 0

0 if x = 0
.

Then lim
x→0+

g(x) = lim
x→0+

f(x) = 0 = g(0). Thus g(x) is continuous

on [0,+∞). Moreover, g′(x) = f ′(x) > 0 for any x > 0. For any
x > 0, applying mean value theorem to g(x) on [0, x], there exist
0 < ξ < x such that

g(x)− g(0)

x− 0
= g′(ξ)

f(x)− 0

x
= f ′(ξ)

which implies f(x) = f ′(ξ)x > 0.

(b) Consider f(x) = (1 + x) ln(1 + x)− x lnx. Then

f ′(x) = ln(1 + x) + 1− lnx− 1 = ln(1 + x)− lnx > 0

for any x > 0 and

lim
x→0+

f(x) = lim
x→0+

(1 + x) ln(1 + x)− x lnx

= − lim
x→0+

x lnx

= − lim
t→+∞

ln(1
t
)

t

= lim
t→+∞

ln t

t
= 0.

By (a), we have f(x) = (1+x) ln(1+x)−x lnx > 0 for any x > 0.
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(c) Let a > 0 and g(t) =
ln(1 + at)

t
. Then for any t > 0,

g′(t) =
t

1+at
· at ln a− ln(1 + at)

t2

=
at ln(at)− (1 + at) ln(1 + at)

t2(1 + at)
< 0

where the last inequality follows from (b) since at > 0 for any
t > 0.

(d) Let a =
v

u
. Note that g(x) is continuous on [p, q] and differentiable

on (p, q). By the mean value theorem, there exists ξ ∈ (p, q) such
that

g(q)− g(p)

q − p
= g′(ξ) < 0

ln(1 + aq)

q
− ln(1 + ap)

p
< 0

ln(1 + aq)
1
q < ln(1 + ap)

1
p

(1 + aq)
1
q < (1 + ap)

1
p(

1 +
vq

uq

) 1
q

<

(
1 +

vp

up

) 1
p

(uq + vq)
1
q < (up + vp)

1
p .
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