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1 Ordinary differential equations of first-order

An equation of the form
F(xayayla T ,y(n)) = 0? T E (avb)7

d dr
where y = y(x),y’ = d—y, cey = d—i is called an ordinary differential equation (ODE)
x x
of the function y.
Examples:
1.y —4y =0,

2. y" — 322y + 4Ty — 5e3 +1 =0,
3. 23y’ 4+ ysiny’ = 0.

The order of the ODE is the order of the highest derivative in the equation. In solving ODE’s,
we are interested in the following problems:

e Initial value problem(IVP): to find solutions y(x) which satisfies given initial value
conditions, e.g. y(xo) = Yo, ¥ (x0) = y; for some constants yo, y;.

e Boundary value problem(BVP): to find solutions y(z) which satisfies given boundary
value conditions, e.g. y(xg) = yo,y(z1) = y1 for some constants yo, Y1

An ODE is linear if it can be written as the form

Pu(@)y™ 4+ po_1 (2)y "D - pi ()Y 4 po(t)y = g(x), pal(z) # 0.

The linear ODE is called homogeneous if g(z) = 0, nonhomogeneous, otherwise. If an ODE
is not of the above form, we call it a non-linear ODE.

1.1 First-order linear ODE
The general form of a first-order linear ODE is

Y +p(z)y = g(x).

The basic principle to solve a first-order linear ODE is to make left hand side a derivative of an
expression by multiplying both sides by a suitable factor called an integrating factor. To find
integrating factor, multiply both sides of the equation by e/(*), where f(z) is to be determined,

we have
@y 4 el @p(2)y = g(x)ef @),

Now, if we choose f(x) so that f’(x) = p(x), then the left hand side becomes

d
@y 4 I @) f(2)y = — (ef(x)y> ,

Thus we may take
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and the equation can be solved easily as follow.

Y +p@)y = g
d
efzz(z)dwﬁJref POy )y = g(a)ed P

d
& Sp(x)dz,
dme 4

6fp(‘”)dwy = / (g(a:)efp(‘r)dm) dx

y = e Jr@de / (g(x)efp(x)dx> "

Note: Integrating factor is not unique. One may choose an arbitrary integration constant for
[ p(z)dz. Any primitive function of p(x) gives an integrating factor for the equation.

Example 1.1.1. Find the general solution of y + 2xy = 0.

Solution: Multiplying both sides by GIQ, we have

d
e*” ﬁ + e 20y = 0
d
%69523/ =0
eIQy = C
y = Ce™™

Example 1.1.2. Solve (2?> — 1)y + 2y = 2z, > 1.

Solution: Dividing both sides by z? — 1, the equation becomes

@ T 2z
dx m2—1y_x2—1'

x 1 9
_/x2_1d:£—2ln(:x -1)+C

Thus we multiply both sides of the equation by

exp <; In(z? — 1)) ~ (2 —1)h

and get
1d T 2x
(xQ - 1)2 Y + ly = 1
T (22 1) (22 — 1)
d 2 1 2$
all -1 =
dx <($ )Qy) (22 — 1)%
(2 —1)2y = / S
(22 - 1)}
y = (2°— 1)_% 2(z% — 1)% + C)
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O
Example 1.1.3. Solve 3y — ytanz = 4sinz, v € (=5, F).
Solution: An integrating factor is
exp(— /tan xdz) = exp(In(cosx)) = cos x.
Multiplying both sides by cos x, we have
y .
cosx— —ysinx = 4sinxcosz
dx
. (ycosx) = 2sin2x
ycosr = / 2sin 2zdx
ycosx = —cos2x+C
C — cos2x
y = —_—m
cosx
O

Example 1.1.4. A tank contains 1L of a solution consisting of 100 g of salt dissolved in water.
A salt solution of concentration of 20 gL~ is pumped into the tank at the rate of 0.02 Ls™, and
the mixture, kept uniform by stirring, is pumped out at the same rate. How long will it be until
only 60 g of salt remains in the tank?

Solution: Suppose there is x g of salt in the solution at time ¢ s. Then x follows the following
differential equation

dx
— =0.02(20 —
o (20 —x)
Multiplying the equation by %%, we have
dx
— 4+ 0.02z = 04
ar U
e0.0Qtdj + 0.0260'02t$ — 0'460.0275
dt
160'02% = /0.460'02tdt
dt
002, 9002 |
= 20+ Ce "%

Since z(0) = 100, C' = 80. Thus the time taken in second until 60 g of salt remains in the tank
is

60 = 20+ 80e 0%
002t _ o

t = 50In2
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Example 1.1.5. David would like to buy a home. He had examined his budget and determined
that he can afford monthly payments of $20,000. If the annual interest is 6% compounded
continuously, and the term of the loan is 20 years, what amount can he afford to borrow?

Solution: Let $y be the remaining loan amount after ¢ months. Then

i% = %y—zo,ooo
%—o.oow = —20,000
670.00525% _ 0'005y670.005t = —20, 000670.00515
%(e*“o%) = —20,000e 005"
(00058, —20, 000 0-005¢ Lo

—0.005
y = 4,000,000+ Ce00%

Since the term of the loan is 20 years, y(240) = 0 and thus

4,000,000 4 Ce2005x240  —
4,000, 000
¢ = - ol:2
= —1,204,776.85

Therefore the amount that David can afford to borrow is

y(0) = 4,000,000 — 1,204, 776.85¢"005(0)
= 2,795,223.15

Note: The total amount that David pays is $240 x 20,000 = $4, 800, 000. O

Exercise 1.1

1. Find the general solutions of the following first order linear differential equations.

(a) ¢ +y=4c" (@) 2% +ay=1 (8) (x+1)y ~2y = (2+1)
(b) 3zy +y =12z (e) zy +y=+x (h) ¢/ cosz +ysinz =1
(c) y + 322y = 22 (f) 2y =y + 2?sinx () 2y + Bz + 1)y =3

2. Solve the following initial value problems.

(a) ¥ —y=e*;y(0) =1 (d) (z+1)y' +y =z y(1) =10
(b) ¥/ = (1 —y)cosx; y(m) =2 (e) 2%y +2zy =Inxz; y(1) =2
(¢) (¢ +4)y + 3zy = 3z; y(0) = 3 (f) =y +y =sinz; y(r) =1

1.2 Separable equations

A separable equation is an equation of the form

% = f(z)g(y).
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It can be solved as follows

dy
— = f(z)dx
9(y) )
dy
— = f(x)dz
/ 9(y) )
Example 1.2.1. Find the general solution of y' = 3z%y.
Solution:
&y = 32%dx
Y
d
Y /31‘2d:n
Y
lny = 224+
y = Ce®  where C' = ¢’

d
Example 1.2.2. Solve Qﬁd—y =y +1,z>0.
x

Solution:
dy dx
y?+1 2\/T
dy dx
[#5i = [am
tan ly = Vr+C
y = tan(vz +C)

d
Example 1.2.3. Solve the initial value problem & _ L, y(0) = —1.
dr  y+ 22y
Solution:
dy _
dr — y(1+22)

X
/ydy = /szdl’

2 1 1
= = d(1 + 22
2/1+x2(+x)

2 In(1+2?) 4+ C

N |

<
I

Since y(0) = —1, C = 1. Thus
y* = 1+In(l+2?)

y = —v/1+In(1+22)
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Example 1.2.4. (Logistic equation) Solve the initial value problem for the logistic equation

dy

e ry(1 —y/K), y(0) = yo

where r and K are constants.

Solution:
_dy
y(1—y/K)

/y(l_d'qz/K)dt — [ v

[ G ) =

= rdt

Iny—In(l-y/K) = rt+C
Y — o rt+C
1—y/K
Kert+C
y = K+ ert+C

To satisfy the initial condition, we set

c_ Y
1—yo/K

and obtain
Yo K

~yo+ (K —yo)e "t

Note: When t — oo,
lim y(t) = K.

t—o00

Exercise 1.2

1. Find the general solution of the following separable equations.

(a) ¥ +2z2y2 =0 (¢) ¥ =6x(y — 1)§ (e) yy' = x2(y> +1)
(b) ¥ =3 /zy (d) ¥ = ysinz ) vy =1+z+y+ay

2. Solve the following initial value problems.

(a) oy’ —y=22%y; y(1) =1 (@) ¢ =4 —y; y(1) = =3
(b) v =ye®; y(0) = 2e (e) ¢/ tanz = y; y(%) = %
(c) 2yy = NIRRT y(5) =2 (f) ¥ =322(y* +1); y(0) = 1

3. Solve the logistic equation

Z—Z:0.0&y(l— Y )

with initial condition y(0) = 100.
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1.3 Exact equations

We say that the equation

M(z,y)dx + N(z,y)dy =0 (1.4.1)
is exact if
oM _ oN
oy  Ox’
In this case, there exists a function f(z,y) such that
0
oy =N

Then the differential equation can be written as

o -
df (z,y) = 0
Therefore the general solution of the differential equation is
fz,y) = C.
To find f(z,y), first note that 5
oy

Hence

f(z,y) = /M(x,y)dfv+g(y)-

Differentiating both sides with respect to y, we have

N(z,y) = /Mxyd:z-i—g()
since of
— = N.
Jy
Now

N(z,y) — ;y/M(x,y)dx

is independent of x (why?). Therefore

and we obtain

fry) = /Mx W)z + o(y)

_ /M(x,y)da:+ ( /Ma:ydx)

Remark: Equation (1.4.1) is exact when F = (M (z,y), ( y)) defines a conservative vector
field. The function f(x,y) is called a potential function for F
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Example 1.3.1. Solve (4z + y)dz + (x — 2y)dy = 0.

Solution: Since 5 5
—dzr+y)=1=—(x —2y),

dy Oz
the equation is exact. We need to find F(z,y) such that
F
or = M and or = N.
ox oy

Now

F(z,y) = /(436 +y)dx
= 2% +ay+g(y)

To determine g(y), what we want is

oF 5
= g
oy Y
r+g'(y) = -2
gy = -2y
Therefore we may choose g(y) = —y? and the solution is

F(z,y) =22+ 2y —y* = C.

d Yy
Example 1.3.2. Solve & _ ﬂ.
dr e — ey

Solution: Rewrite the equation as
(e¥ + x)dx + (ze¥ — e*)dy = 0.
Since

g(ey +z)=¢Y= 2(avey — er),

dy oz

the equation is exact. Set

F(z,y) = /(ey+a:)dx

1
= ze¥ + 5162 +9(y)

We want
8£ — ¥ — eV
dy
ze¥ +¢'(y) = ze¥ —e¥

Jgy) = —e¥
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Therefore we may choose g(y) = —%629 and the solution is

1 1
re¥ + 5:1:2 — 5627‘/ =C.

g

When the equation is not exact, sometimes it is possible to convert it to an exact equation by
multiplying it by a suitable integrating factor. Unfortunately, there is no systematic way of
finding integrating factor in general.

Example 1.3.3. Show that u(z,y) = x is an integrating factor of (3xy+y?)dz+ (x> +zy)dy = 0
and then solve the equation.

Solution: Multiplying the equation by = reads
(32%y + zy?)dx + (2° + 2%y)dy = 0.
Now

0
a—y(?)m?y +2y?) = 32° 4 2zy

0
%(m?’ +2%y) = 32+ 2zy

Thus the above equation is exact and x is an integrating factor. To solve the equation, set

F(z,y) = /(3$Qy+my2)d$
1
= 2y+ 527 +g(y)

Now we want

- +
9y x° +xY
Bty +9(y) = 23 +ay
gy) = 0

Therefore g(y) is constant and the solution is

1
a3y + §m2y2 =C.

O
Note: The equation in Example is also a homogenous equation which will be discussed in
Section [I.4

Example 1.3.4. Show that u(xz,y) = y is an integrating factor of ydx + (2x — e¥)dy = 0 and
then solve the equation.

Solution: Multiplying the equation by y reads

yidx 4+ (2zy — ye¥)dy = 0.
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Now
9
R = 2
a5" y
0
Z(9py —we¥) = 9
3x(wy ye¥) y

Thus the above equation is exact and y is an integrating factor. To solve the equation, set

F(z,y) = / yida

= zy® +g(y)
Now we want
oF
T 9puy — v
8y .’L'y ye
2ey+¢'(y) = 2zy—yeY
Jy) = —ye’

9y) = - / ye'dy

= —/ydey

= —ye¥+ /eydy
= —ye!+eV+ ('

Therefore the solution is
zy? —ye¥ +e¥ = C.

Exercise 1.3

1. For each of the following equations, show that it is exact and find the general solution.

(a) (5x + 4y)dx + (4 — 8y3)dy = 0 (d) (14 ye™)dx + 2y + xze™)dy =0
(b) (322 + 2y?)dx + (4ay + 6y*)dy = 0 (e) (z® + L)dx + (y* +Inz)dy =0
(c) (Bzy? —y®)dx + (3z%y — 32y?)dy = 0 (f) (cosz +Iny)dr + (% +e¥)dy =0

2. For each of the following differential equations, find the value of k so that the equation is
exact and solve the equation

(a) (2zy® — 3)dx + (ka’y + 4)dy = 0 (¢) (22y® + 322%)dx + (22Fy + 4y3)dy = 0
(b) (6zy —y3)dz + (4y + 322+ kxy®)dy =0 (d) (32%y> +y¥)dz + (323y? + 4xy®)dy = 0

3. For each of the following differential equations, show that the given function p is an
integrator of the equation and then solve the equation.

(a) (Bay +y?)dx + (2 + zy)dy = 0; p(x) =«
(b) ydx —ady = 0; p(y) =

1
(¢) ydz +x(1+y*)dy = 0; p(z,y) = ”

(@) (@ —y)da + (@ +y)dy = 0 (@) = —

2 + 92
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1.4 Homogeneous equations

A first order equation is homogeneous if it can be written as

Yor(Y).

X

de

The above equation can be solved by the substitution u = y/z. Then y = xu and

dy n du
—— =u+4x—.
dx dx
Therefore the equation reads
du
U+ o = fu)
du B dj
flu)—u =z
which becomes a separable equation.
d 2 2
Example 1.4.1. Solve &y _ ﬂ
dx 2y
Solution: Rewrite the equation as
dy 1+ (y/x)?
dr 2y/x

which is a homogeneous equation. Using substitution y = zu, we have

!
where C' = ¢~ ¢".

dy 1+ u?

dr ~  2u

1+ u? —2u?
2u

dz

dz

Example 1.4.2. Solve (y + 2ze¥/*)dx — xdy = 0.

Solution: Rewrite the equation as

dy y + 2ze Y/®

de T

=Y 4 oev/e,
x
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Let u = y/x, we have

du dy _
B — = _— = 2 u
u—|—xdx dr u + 2Ze
du
22— 9eTU
xdw e
d
cldy = 228
T
/e“du = /2dw
T
e = 2lnz+C

v/t _9lny = C

Exercise 1.4

1. Find the general solution of the following homogeneous equations.

(a) ¥ = 2y (¢) zy' =y +2\/my (e) 2%y = ay +y”
2zy
(b) 2y =y + /22 —y? (d) 2@ +y)y =y@—y) () 2% =y +a?e

1.5 Bernoulli’s equations

An equation of the form

y +p(@)y =q(@)y”, n#0,1,
is called a Bernoulli’s equation. It is a non-linear equation and y(z) = 0 is always a solution
when n > 0. To find a non-trivial solution, we use the substitution

u=y""
Then
du _ndy
i (I-n)y e
= (1 =n)y " (—p(@)y + q(z)y")
H @y = (1 ngle)
- = (1))

which is a linear differential equation of w.
Note: Don’t forget that y(x) = 0 is always a solution to the Bernoulli’s equation when n > 0.

d
Example 1.5.1. Solve d—y —y=e Ty
x
Solution: Let u =y'=2 =y~1,
du 2y
dx dx
— _y72 (y_i_efa:yZ)
du —1 T
dz Ty -
d
Ly = -
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which is a linear equation of u. Multiplying both side by e*, we have

d
exd—u +efu = -1
T
d
%(ezu) = -1
efu = —x+C
= (C—x)e”®
yl o= (C—a)e?
Therefore the general solution is
x
Yy = o ory=0
O
dy 3
Example 1.5.2. Solve T +y = zy°.
x
Solution: Let u = y'=3 = y—2,
du _ 34y
de 4 dx
du 2y 73 3
i~ g (vt
du 9= _
dx x N
du 2u
222 - 9
de =

which is a linear equation of u. To solve it, multiply both side by exp(— f 22 Ydr) = 272, we

have

d
x72d—u — 2273y = —2272
x
d

a(x_2u) = 2172

20 = 227 4+ C

= 2z + Cx?

y 2 = 2z4Ca?

2 _ 1 _
y = 2x + Cx? ory=0

Exercise 1.5
1. Find the general solution of the following Bernoulli’s equations.

(a) oy +y=a%y? (b) z%y' + 2zy = by* (c) zy' =y(a?y — 1)
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1.6 Substitution

In this section, we give some examples of differential equations that can be transformed to one
of the forms in the previous sections by a suitable substitution.

Example 1.6.1. Use the substitution u = Iny to solve xy’ — 4x*y + 2ylny = 0.

Solution: Substitute

v
Y
into the equation, we have
zy — 42’y +2ylny = 0
/
x <y> +2ny = 4z?
Y
o +2u = 42’
220 + 200 = 428
d _» 3
il - 4
2z % U x
?u = /4x3dac
?u = 2t+C
u = LU2 + )

Example 1.6.2. Use the substitution u = e?Y to solve 2ze?Yy’ = 3z 4 €Y.

Solution: Substitute

u = 2y
into the equation, we have

2ze®y = 3zt +e%
' —u = 32*
uu
——— = 322
x
d (u 9
— (=) = 3=z
dx (:1:)

- /3x2daz

T

U

- = 40

T

e = 2t4Cx
1
vy =5 In |zt + Cx|
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An equation of the form

Y +p1(2)y + pa(2)y” = g(x)
is called a Riccati’s equation. If we know that y(z) = y,(x) is a particular solution, then the
equation can be transformed, using the substitution

Y=1Yp °

to a linear equation of u.

2
Example 1.6.3. Solve the Riccati’s equation v’ — y_ 1-— y—Q given that y = x is a particular
x x

solution.

Solution: Let

1
y=xr+ —.
u
We have
dy _ ,_1ldu
dx u? dx
1 1 5 1 du
Sy = e
1 du 1 1\? 1 1
Pdr x2<“u) m<“u)
1 du B 1 1
wdr ~ zu | 22u?
du 1 B 1
dr =0 T 2

which is a linear equation of u. An integrating factor is

exp <— / 1dx> —exp(—Inz) =21
x

Thus
d
afld—u —z7% = 73
x
d
@(x_lu) = g3
rlu = L +C’
212
1 L
U = —— x
2x
Cz? -1
u = —_—
2x
Therefore the general solution is
2x
y:x+0x2—1 ory =ux.
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Example 1.6.4. Solve the Riccati’s equation y' = 1+ x? — 22y + y? given that y = x is a
particular solution.

Solution: Using the substitution

1
y=xr+ —.
U
We have
dy 1 1 du
dr u? dx
1d
1+a2% —2zy+y* = 1——2—u
u? dx
1 1 1 du
1+22-2 — -2 = 1-—=—
T 3J(JU—'_u)—'_(gg—f_u) u? dx
du
ulal—
dz
u = C—=x
Therefore the general solution is
n 1
=X or =X.
Y C_ Y

Exercise 1.6

1. Solve the following differential equations by using the given substitution.

(a) oy —42%y+2ylny =0; u=Iny )y =(+y+3)%u=x+y+3
b)) y=vetyu=a+y (d) y+e!+1=0u=e?

1
2. Solve the following Riccati’s equations by the substitution ¥y = y; + — with the given
u

particular solution y ().

300 02 2. _ 1
(a) 23y =y? + 2%y — 2% yi(z) =2 (b) 22y — a2 = —2; 1 (z) = =

1.7 Reducible second-order equations

Some second-order differential equations can be reduced to an equation of first-order by a suit-
able substitution. First we consider the simplest case when the zeroth order derivative term y
is missing.

Dependent variable y missing:

F(z,y',y")=0

The substitution
ron dp /
p=Yy,Yy = 7d =P,
T

reduces the equation into a first-order differential equation

F(z,p,p') =0.



Ordinary differential equations of first-order 17

Example 1.7.1. Solve xy” + 2y’ = 6.

Solution: Let p =y'. Then y” = p’ and the equation reads

xp' +2p = 6x

:n2p' +2zp = 62>
d o 2
il - 6
7P T
?p = 228+ 0
y = 2o+ Ciz?

y = 22 —Ciz ' +Cy
O

Example 1.7.2 (Free falling with air resistance). The motion of an free falling object near the
surface of the earth with air resistance proportional to velocity can be modeled by the equation

y' +py +9=0,

where p is a positive constant and g is the gravitational acceleration. Solve the equation with

d
initial displacement y(0) = yo and initial velocity d—‘z(O) = 2.

d d? d
Solution: Let v = d—g Then EZQ/ = d—: and
Wty = 0
dt pvr+g =
v d t
[y = [
v PUT G 0
1
;ln(pv +g9) = —t
In(pv +g) —In(pvo +g) = —pt
pr+g = (pvo+g)e
v = (vo—vr)e " +u,
where p
e =0 = im0

is the terminal velocity. Thus

dy
dt

1 t
Yy—yo = [—(Uo—v)e 7+ rt
P 0
1
y = ;(UO_UT)(l_e_pt)+UTt+y0
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Independent variable x missing;:

The substitution

e _dpdy_dp
vy de dydr dy

reduces the equation to the first-order equation

dp
F (ym,p@) =0

d
Solution: Let p=1'. Then vy = pd—p and the equation reads
Y

Example 1.7.3. Solve yy" = y'°.

w2 =
dy

dp_ dy
p y

/dp_ dy
p y

Inp = Iny+C

p = Cuy

dy

o o

dr 1Y

d

ﬁ = /Cldl'
Yy

lny = Ciz+C
y = 02601x

O

Example 1.7.4 (Escape velocity). The motion of an object projected vertically without propul-
sion from the earth surface is modeled by

d*r GM

@

where r is the distance from the earth’s center, G ~ 6.6726 x 10" Nm?kg® is the constant of
universal gravitation and M =~ 5.975 x 10%4kg is the mass of the earth. Find the minimum initial
velocity vg for the projectile to escape from the earth’s gravity.

) dr d?r  dv dvdr dv
Solution: Let v = I Then 72 = 7 = T = av and
dv GM
vV— = —
dr r2
v T M
/ vdv = — G—er
vp ro T
1, 5 9 1 1
- _ — M= —- =
2(U UO) ¢ (r r0>

11
g = v2+2GM<—>



Ordinary differential equations of first-order 19

where 79 &~ 6.378 x 10%m is the radius of the earth. In order to escape from earth’s gravity, r
can be arbitrary large and thus we must have

’UO Z +U Z
To To
2GM
vy > ~ 11, 180(ms_1)
0

Exercise 1.7

1. Find the general solution of the following differential equations by reducing them to first
order equations.

(a) yy" + (¥')* =0 (c) @y’ +y =4 () vy + () =y
(b) ¥ +4y =0 (d) «?y" + 32y =2 (f) v =2y(y')

2. Find the general solution of the following differential equations.

(a) y = ay? (8) ¥ =1+ 2%+ y* + 2?y?
2
(b) o = L2 (h) 2%y + 20y =2 — 1
X
) (1-2)y+y—x=0

Yy 6xy> + 2y*

() T4y D V+oss3—a3=0
(d) zy' + 2y =622y 922y? + 8xy?
) 2%y —ay —y* =0 (k) 2%y = 2%y — ¢

(f) 22y + 2zy? = 9> (1) 3zy' + 23y* +3y =0



2 Linear systems and matrices

The study of linear algebra is motivated by trying to understand the solutions to a linear
system which is a system of m linear equations in n unknowns

anry + apr: + - 4+ awxr, = b
a21x1 + a22x9 + - + a9nTn = b2
am1T1 + amar2 + 0+ AGpp®n = by

The above system of linear equations can be expressed in the following matrix form

a1 a2 - Qg 1 b1
a1 a2 -+ a2, Z2 bo
aml am2 - Amn Tn bm

For each linear system, there associates an m x (n + 1) matrix

air a2 - aip | b
az1 a2 -+ Qg | bo
Aml am2 - Amn bm

which is called the augmented matrix of the system. The solution set of the system is the
set
{veR": Av =0}

of vectors in R™ which satisfy the system. Two linear systems are equivalent if they have the
same solution set.

2.1 Gaussian elimination

The idea of solving a general linear system is to transform the system to an equivalent system of
certain type whose solution set can be written down easily. The type of systems that we would
transform a system to is called row echelon form. The system is transformed using elementary
row operations. The process of obtaining row echelon form using elementary row operations is
called Gaussian elimination. First we give the definition of row echelon form.

Definition 2.1.1 (Row echelon form). A matriz R is said to be in row echelon form if it
satisfies the following three properties:

1. Every row of R that consists entirely of zeros lies beneath every row that contains a nonzero
entry.

2. The first nonzero entry of each row of R is 1.

3. In each row of R that contains a nonzero entry, the number of leading zeros is strictly less
than the number of leading zeros in the preceding rows.

Example 2.1.2. The following matrices are not in row echelon form.
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105 —18 There is a nonzero row, the 3rd row, lies
00 0 beneath a zero row, the 2nd row
000 1 3 ’ ’
13 0 -2
03 0 1 The first nonzero entry of the second row
000 0 0 18 not one.
14 -2 0 5 The number of leading zeros in the 2nd
00 1 -1 3 row is not strictly less then the
00 1 0 4 number of zeros in the 3rd row.

Example 2.1.3. The following matrices are in row echelon form.

1 -1 0 2 -4 0140 =3 1 -3 2 -1 2
0 0 00 O 0000 1 0 1 4 5 -1
0 0 00 O 0000 O 0 0 0 1 3

To write down the solution set of a linear system associated with a row echelon, we need to
distinguish between leading variables and free variables.

Definition 2.1.4 (Leading and free variables). Let A be an m xn matriz and b be an m column
vector. Suppose the augmented matriz R = [A|b] associated with the linear system Ax = b,
where X = (x1,...,2,)7, is in row echelon form. Then for 1 <k <mn,

1. if the k-th column contains a leading nonzero entries, then xj is a leading variable.

2. if the k-th column does not contain a leading nonzero entries, then xy, is a free variable.

The solution set of a linear system associated with a row echelon form can be written down by
setting the free variables to be arbitrary constants and then solving for the leading variables
using backward induction.

Example 2.1.5. Write down the solution set of the linear systems associated with the given
augmented matrices.

13 0 -2|-3
1. 01 -5 1] 3
00 0 1 1

1 -4 3 0|2

2 0O 0 0 13

0O 0 0 010
Solution:

1. The only free variable is x3. Let 3 = . Then

ry = 1
To = 34+dr3—x4=50+2
gy = —3—3x9+2x4=—-15a—7
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Thus the solution to the system is
(r1,22,23,24) = (=15 — 7,5+ 2, a0, 1)
where o € R is an arbitrary real number.
2. There are two free variables x5 and x3. Let 9 = o and x3 = 8. Then
ry = —3
r1 = 2+4x9 —3x3 =40 — 358+ 2
Thus the solution to the system is

($1,$2,x3,$4) == (40[ - 36 + Q,Q,ﬂ, _3)

where «, § € R are arbitrary real numbers.

O
The solution set of the second example above is easier to be written down because it is in reduced
row echelon form.

Definition 2.1.6 (Reduced row echelon form). A matriz R is said to be in reduced row
echelon form (or R is a reduced row echelon matrix) if it satisfies all the following
properties:

1. R is in row echelon form.

2. Each leading nonzero entry of R is the only nonzero entry in its column.

To solve a general linear system, we may transform the system to a row echelon form using
elementary row operations.

Definition 2.1.7 (Elementary row operation). An elementary row operation is an operation
on a matriz of one of the following forms.

1. Multiplying one row by a nonzero constant.
2. Interchanging two rows.
3. Replacing one row by adding a multiple of another row to it.

Definition 2.1.8 (Row equivalent). We say that two matrices A and B are row equivalent
if one can obtain B by applying successive elementary row operations to A.

The following two theorems hold the keys of using Gaussian elimination to solve linear systems.
The first theorem follows from the fact that elementary row operation does not alter the solution
set.

Theorem 2.1.9. Two linear systems have the same solution set if and only if the augmented
matrices associated with the two systems are row equivalent.

The second theorem says that any matrix is row equivalent to a row echelon form. It can be
proved by induction on the number of columns.

Theorem 2.1.10. Any matriz can be transformed to a row echelon form by applying successive
elementary row operations.
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Let’s see how Gaussian elimination works with the following examples.

Example 2.1.11. Solve the linear system

1 + x99 — 2x3 = 5
2r1 — ®xp + 23 = -2
r1 — 2x0 + 4dx3 = —4

Solution: The augmented matrix associated with the system is

1 1 -2 5

2 -1 2 |-=2

1 -2 4 |4

Using Gaussian elimination, we have
Rz — Ry — 2R
1 1 =25 533 _ 323 ~ Rll
2 -1 2 |-=2 —
1 -2 4 |4
1 1 =25
RQjRg 0 1 -2 4 Rs— Ry 43Ry

0 -3 6 |-9

The third row of the last matrix corresponds to the equation

0=3

1 1 =21 5

0 -3 6 |—-12

0 -3 6 | -9
1 1 =215
01 —-2|4
00 013

which is absurd and thus has no solution. Therefore the solution set of the original linear system

is empty. In other words, the linear system is inconsistent.

Example 2.1.12. Solve the linear system

r1 + x2 + x3 + xy + T3
1 + x9 4+ x3 + 2x4 + 25
r1 + x9 + x3 + 2x4 + 3zs
Solution: Using Gaussian elimination, we have
R:— Ry —R
11 1 1 1]2 R§—>R§—Ri 11
1112 23 — 0 0
111 2 3|2 0 0
111
fazfafa | g 0 0
000
Thus the system is equivalent to the following system
Ty + x2 + x3 + T4 + Tz =
x4 + x5 =

Zs

O

= 2
= 3
= 2
1 1 1|2
01 1|1
01 2|0
1 1] 2
1 1)1
0 1|-1
2
1
-1
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The solution of the system is

5 = —1

T4 = 1-— Ty = 2

I :2—$2—IL’3—$4—$5:1—$2—$3
Here 1, x4, x5 are leading variables while zo, x3 are free variables. Another way of expressing
the solution is

(x17x27x37x47x5) == (1 - — 5,&,&,2,—1), avﬁ € R.
O

A matrix may have many different row echelon forms. However, any matrix is row equivalent
to a unique reduced row echelon form.

Theorem 2.1.13. FEvery matrix is row equivalent to one and only one matriz in reduced row
echelon form.

Example 2.1.14. Find the reduced row echelon form of the matriz

1 21 4
3 8 7 20
2 7 9 23
Solution:
121 4 Mo o O 121 4
38 7 20 AN 02 4 8
2 7 9 23 0 3 7 15
1 21 4 1 21 4
Ro—1iR _
e 01 2 4 o2 Ra 3R 0124
0 3 7 15 001 3
1 0 -3 —4 Ry — Ry + 3R 1 00 5
_ Ro — Ro — 2R:
it T T SR I
00 1 3 001 3

Example 2.1.15. Solve the linear system

r1 + 2x9 + 3x3 + 4dxy = 5
1 + 2x9 4+ 223 + 3x4 = 4 .
r1 + 2x0 + w3 + 2x4 = 3
Solution:
1 2 3 4|5 R e 12 3 415
1 2 2 3|4 — 00 —1 —1|-1
1 21 2|3 00 —2 —2|-2
12 3 415 1 2 3 45
Re ot 00 1 1|1 R Ry p2k (0 01 1]1
00 —2 —2|-2 00000
1 20 1]2
=R 3R, (00111
00000
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Now z1,x3 are leading variables while x2, x4 are free variables. The solution of the system is
(581,562,‘173,274) — (2 —2a — B)av 1- B)ﬂ)) aaﬁ € R.

0

Theorem 2.1.16. Let R be a row echelon matrix which is row equivalent to the augmented
matriz (A|b) of a linear system Axxz =b. Then the system has

1. no solution if the last column of R contains a leading nonzero entry.
2. unique solution if (1) does not holds and all variables are leading variables.

3. infinitely many solutions if (1) does not hold and there exists at least one free variable.

Proof. Suppose A is an m x n matrix. Then R is an m x (n + 1) matrix. Since R and (A|b)
are row equivalent, R has the same solution set with the system Axz = b.

1. If the last column of R contains a leading nonzero entry, then the last nonzero row corre-
sponds to the equation 0 = 1 which has no solution.

2. If (1) does not hold and all variables are leading variables, then the value of xy is uniquely
determined by the equation associated with the k-th row.

3. If (1) does not hold and there exists at least one free variable, then there are infinitely
many possible values for the free variable.

O]

In particular, the homogeneous system Ax = 0 always has the solution x = 0. This solution is
called the trivial solution. The trivial solution is the only solution to the homogeneous system
if and only if A is row equivalent to I.

Theorem 2.1.17. Let A be an n X n matrix. Then homogeneous linear system Ax = 0 has
only the trivial solution if and only if A is row equivalent to the identity matriz 1.

Proof. The system Ax = 0 has at least one solution namely the trivial solution x = 0. Let R
be the reduced row echelon form of (A|0). By Theorem the trivial solution is the only
solution if and only if there is no free variable. This is the case if and only if R = (I|0) or
equivalently A is row equivalent to I. ]

Exercise 2.1

1. Find the reduced row echelon form of the following matrices.

(a)3715 5 2 -5
2 5 11 ) | 9 4 -7
41 -7

1 2 3 1 —4 -2
b)) [ 1 41 @ | 3 -12 1

[\]
=
NeJ
[\V]

-8 5
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2 2 4 2 3 6 1 7 13
e [ 1 -1 -4 3 h) [ 5 10 8 18 47
2 7 19 -3 2 4 5 9 2
I -2 45 00 -2 0 7 12
1 -2 4 =31 i [ 2 4 -10 6 12 28
3 -6 -1 4 2 4 -5 6 -5 -1
1 2 3 4 5
() 1 2 2 3 4

-1 -2 -1 -2 -3

2. Solve the following systems of linear equations.

r1 — 3x9 + 4dx3 = T
(a)

) — 5$3 = 2
3r1 + x99 — 3x3 = —4
(b) Ty + T2 4+ x3 = 1
51 4+ 6x9 + 8xr3 = 8
207 — m® -+ bxg = 15
(C) 1 + 3xs — x3 = 4
ry — 4x9 + 6x3 = 11
3r1 4+ 929 — 3x3 = 12
1 + T2 — 223 4+ x4 = 9
(d) Tog — T3 + 2z4 = 1
T3 — 333‘4 = 5
T1T — 29 4+ x3 + x4 = 1
(e) 1 — 229 + 3 — x4 = -1
TG — 29 4+ x3 4+ dxy = B
3r1 — 6x9 + x3 + 13xz4 = 15
(f) 3r1 — 6x9 + 3z3 + 21lxy = 21
261 — 4x9 + bxg + 206xy = 23

2.2 Matrix arithmetic

A matrix is a rectangular array of real (or complex) numbers of the form

ain a2 - Qip
asi  ax - G2
Gml Om2 " OGmn

The horizontal arrays are called rows and the vertical arrays are called columns. There are
m rows and n columns in the above matrix and it is called an m x n matrix. We called the
number in the i-th row and j-th column, where is a;; in the above matrix, the ij-th entry of
the matrix. If the number of rows of a matrix is equal to the number of its columns, then it is
called a square matrix.

Definition 2.2.1. The arithmetic of matrices are defined as follows.
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1. Addition: Let A = [a;j] and B = [b;;] be two m x n matrices. Then

That s
ai; a2
az1 a2

Gm1l Gm2

a1 + b1
as1 + b2y

am1 + bml

2. Scalar multiplication: Let A = [a;;] be an m x n matriz and c be a scalar. Then

That s
ail a2
a1 a2
c
Am1 Am2

[A + B]z‘j = a;; + b;j.

G1n bir  bi2
aon bar b2
4
Gmn bm1  bm2
a12 + b2 a1p + bin
a2 + baa agn + ban
am2 + bma mn + bmn

[CA]ij = caij .
A1n caiy Cai12
a2n caz1  caz2
Qmn Cam1 CAm?2

bln
b2n

CQ1n
Caon

CQmn,

27

3. Matrix multiplication: Let A = [a;;] be an m x n matriz and B = [bj] be an n x r.
Then their matriz product AB is an m X r matriz where its ik-th entry is

n
[ABJix, = Z aijbjr = ai1big + aigbag + -+ + Ainbpk.

J=1

For example: If A is a 3 X 2 matriz and B is a 2 X 2 matrix, then

ail a2 biy
a1 Q22 < boy
as; as2

s a 3 X 2 matrix.

b12
bao

a11b11 + ai2b21  a11biz + ai2b22
> = | a21b11 + azba1 a21biz + azebae

a31bi1 + aza2ba1  azibia + azabao

A zero matrix, denoted by 0, is a matrix whose entries are all zeros. An identity matrix,

denoted by I, is a square matrix that has ones on its principal diagonal and zero elsewhere.

Theorem 2.2.2 (Properties of matrix algebra). Let A, B and C be matrices of appropriate
sizes to make the indicated operations possible and a, b be real numbers, then following identities

hold.

1. A+B=B+A
A+(B+C)=(A+B)+C
A+0=0+A=A

e

a(A +B) =aA +aB
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(a+b)A = aA + bA
a(bA) = (ab)A

a(AB) = (aA)B = A(aB)
A(BC) = (AB)C

A S TR N

A(B+C)=AB+AC
10. (A +B)C = AC + BC
11. AO=0A =0

12. AI=TA=A

28

Proof. All properties are obvious except (8) and we prove it here. Let A = [a;;] be m x n matrix,
B = [bji] be n x r matrix and C = [¢j;] be r x s matrix. Then

[(AB)Cla

Remarks:

T

> [ABJircw

k=1

T n
§ § a;jbjk | cr

k=1 \j=1
n T

> (Y b
j=1 k=1

> ay[BCly
j=1
[A(BC)]u

1. AB is defined only when the number of columns of A equals the number of rows of B.

2. In general, AB # BA even when they are both well-defined and of the same type. For

example:

i

Then

1 1
0 1

)min=(5)
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3. AB = 0 does not implies that A = 0 or B = 0. For example:

10 0 0
A_<0 0);&0andB—(O 1)7&0

w(10) (5 0)-(1)

Definition 2.2.3. Let A = [a;;] be an m x n matriz. Then the transpose of A is the n x m
matriz defined by interchanging rows and columns and is denoted by A”, i.e.,

But

[AT)ji = ai for 1 <j<n,1<i<m.

Example 2.2.4.

T
5 0 5\7 2 4 7 -2 6 7 15
1. B =0 -1 2.11 2 3 = -2 2 0
4 -1 7
5 7 5 0 4 6 3 4

Theorem 2.2.5 (Properties of transpose). For any m x n matrices A and B,

1. (AT)T
2. (A+B)T AT+BT
3. (cA)T = cAT;

4. (AB)T = BTAT.
Definition 2.2.6 (Symmetric and skew-symmetric matrices). Let A be a square matriz.
1. We say that A is symmetric if AT = A.

2. We say that A is anti-symmetric (or skew-symmetric) if AT = —A.
Exercise 2.2
1. Find a 2 x 2 matrix A such that A% =0 but A # 0.

2. Find a 2 x 2 matrix A such that A? =1 but A # £I.

3. Let A be a square matrix. Prove that A can be written as the sum of a symmetric matrix
and a skew-symmetric matrix.

4. Suppose A, B are symmetric matrices and C, D are skew-symmetric matrices such that
A+C=B+D. Provethat A=Band C=D

=(0a)

A? — (a4 d)A + (ad —bc)I =0

5. Let

Prove that

6. Let A and B be two n x n matrices. Prove that (A + B)? = A2 + 2AB + B? if and only
if AB =BA.
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2.3 Inverse

For square matrices, we have an important notion of inverse matrix.

Definition 2.3.1 (Inverse). A square matriz A is said to be invertible, if there exists a matric
B such that
AB=BA =1

We say that B is a (multiplicative) inverse of A.

Inverse of a matrix is unique if it exists. Thus it makes sense to say the inverse of a square
matrix.

Theorem 2.3.2. If A is invertible, then the inverse of A is unique.

Proof. Suppose B and By are multiplicative inverses of A. Then

B, = Byl = By(AB,) = (ByA)B; = IB; = B,.

The unique inverse of an invertible matrix A is denoted by A~!.

=(22)

is invertible if and only if ad — bc # 0, in which case

1 d —b
Al = .
ad — be < —c a )

Theorem 2.3.4. Let A and B be two invertible n x n matrices.

Example 2.3.3. The 2 x 2 matriz

1. A7 is invertible and (A=Y 71 = A;
2. For any nonnegative integer k, A* is invertible and (A*)~1 = (A=H)¥;
3. The product AB is invertible and

(AB)"'=B'A7};

4. AT is invertible and

Proof. We prove (3) only.

(AB)(BT'A ) =ABB HA ' =ATA ' = AA 1 =1
(BT'A™)(AB) =B ' (A'A)B=B'IB=B 'B=1

Therefore AB is invertible and B~*A~! is the inverse of AB. O

Inverse matrix can be used to solve linear system.

Theorem 2.3.5. If the n xn matriz A is invertible, then for any n-vector b the system Ax =b
has the unique solution x = A~ 'b.
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Example 2.3.6. Solve the system

4r1 + 620 = 6
5r1 + 9x9 = 18

4 6

Solution: Let A = < 5 9

> . Then

Thus the solution is

Therefore (z1,z2) = (=9,7). O

Next we discuss how to find the inverse of an invertible matrix.

Definition 2.3.7. A square matrix E is called an elementary matrix if it can be obtained by
performing a single elementary row operation on 1.

The relationship between elementary row operation and elementary matrix is given in the fol-
lowing theorem which can be proved easily case by case.

Theorem 2.3.8. Let E be the elementary matriz obtained by performing a certain elementary
row operation on 1. Then the result of performing the same elementary row operation on a
matriz A is EA.

Theorem 2.3.9. Fvery elementary matrix is invertible.

The above theorem can also by proved case by case. In stead of giving a rigorous proof, let’s
look at some examples.

Example 2.3.10. Examples of elementary matrices associated to elementary row operations
and their inverses.

Elementary Interchanging Multiplying a row Adding a multiple of
row operation two rows by a nonzero constant a row to another row
100 1 00 1 0 -2
Elementary matrix 0 0 1 010 01 0
010 0 3 0 0 1
1 00 1 00 1 0 2
Inverse 0 1 010 010
010 00 1 001

Theorem 2.3.11. Let A be a square matriz. Then the following statements are equivalent.

1. A is invertible
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2. A is row equivalent to 1

3. A is a product of elementary matrices

Proof. The theorem follows easily from the fact that an n x n reduced row echelon matrix is
invertible if and only if it is the identity matrix I. O

Let A be an invertible matrix. Then the above theorem tells us that there exists elementary
matrices Eq1, Eo, - -+, E; such that

E.E - EoE A =1
Multiplying both sides by (E1) ' (E2)™!--- (Ex_1) ' (Ex)~! we have
A= (E) (Bt (Bpog) T (Br)

Therefore
Al = E.E;._1 - -EsE;

by Proposition [2.3.4]

Theorem 2.3.12. Let A be a square matriz. Suppose we can preform elementary row operation
to the augmented matriz (A|I) to obtain a matriz of the form (I|E), then A~! = E.

Proof. Let E1,Eo,--- ,E be elementary matrices such that
EiE;_1---EE{(A]I) = (I|E).
Then the multiplication on the left submatrix gives
EiE; - EE/A=1
and the multiplication of the right submatrix gives

E=E,E; - EEI=A""1

O
Example 2.3.13. Find the inverse of
4 3 2
5 6 3
35 2
Solution:
4321100 1 =2 0] 10 —1
56 3010 R R~ Rs 5 6 3101 0
352001 3 5 2100 1
Ry = Ry — 5By 1 =2 0 1 0 —1 1 =2 0 1 0 -1
R, R3s — 3R _
s e 0 16 3| -5 1 5 Ra—Ra-FRs 05 1| -21 1
0 11 2 | -3 0 4 0 11 2| -3 0 4
1 =2 0] 1 0 -1 1 20| 1 0 -1
Rs—Hs -2Ra 0 5 1| -2 1 1 Ra s 0 1 0] 1 =2
01 0| 1 -2 2 05 1| -2 1 1
1 -2 0] 1 0 -1 1 00| 3 —4 3
Rs—Rs o5, 01 0| 1 -2 2 Ri=Ruf 2R 1 0] 1 -2 2
0 0 1| -7 11 -9 00 1| -7 11 -9
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Therefore

A—l
—7

-4 3
-2 2
11 -9

Example 2.3.14. Find a 3 x 2 matriz X such that

1 2 3
21 2 | X=
1 3 4

Solution:
1 2 3 0 -3
21 2 -1 4
1 3 4 2 1
1 2 3 0 -3
faerfis 01 1 | 2 4
0 -3 —4 -1 10
1 23] 0 -3
i 01 1] 2 4
0 01 -5 —22
1 00 1 11
a2 i 010/ 7 26
0 01 -5 —22
Therefore we may take
1
X = 7
-5
Exercise 2.3
1. Find the inverse of the following matrices.
5 6
@ (5 %)
5 7
o (5 ¢)
1 5 1
(¢l 250
2 71
1 3 2
(d) 2 8 3
3 10 6

R2 — R2 75R1
Rs — R3 — 3Ry
—

R3s—R3+3R2

R1 — R — 3R3

RQ%RQ*Rs
—
11
26
—22
1
(e) | -1
2
1
) {3
1
4
3
© | g
3

N~ = O

=N W

[ o ] S

33
g
3 0 -3
—4 -1 10
1 2 4
0 -3
1 2 4
-1 o 22
0 15 63
0 7T 26
1 -5 =22
U

2. Solve the following systems of equations by finding the inverse of the coefficient matrices.
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(a) T + x5 = 2 5¢1 + 3z 4+ 2z3 = 4
501 + 6xg = 9 ° (b) 3r1 4+ 3x9 + 223 = 2
ro + x3 = 5

3. Solve the following matrix equations for X.

3 -1 0 2 1 1 -1 1 -1 5
@ | 2 1 1 |X=[20|. 12 3 o0 |xX=| o0 -3
2 -1 4 35 0 2 -1 5 -7

4. Suppose A is an invertible matrix and B is a matrix such that A + B is invertible. Show
that A(A + B)~! is the inverse of I + BA~!.

5. Let A be a square matrix such that A*¥ = 0 for some positive integer k. Show that I — A
is invertible.

6. Show that if A and B are invertible matrices such that A+ B is invertible, then A=!+B~!
is invertible.

7. Let A(t) be a matrix valued function such that all entries are differentiable functions of ¢
and A(t) is invertible for any ¢t. Prove that

d

(A7) =-a" <dA> A

dt

8. Suppose A is a square matrix such that there exists non-singular symmetric matrix[] with
A + AT = 82, Prove that A is non-singular.

2.4 Determinant

We can associate an important quantity called determinant to every square matrix. The de-
terminant of a square matrix has enormous meanings. For example if the its value is non-zero,
then the matrix is invertible, the homogeneous system associated with the matrix does not have
non-trivial solution and the row vectors, or column vectors of the matrix are linearly indepen-
dent.

The determinant of a square matrix can be defined inductively. The determinant of a 1 x 1 matrix
is the value of the its only entry. Suppose we have defined the determinant of an (n—1) x (n—1)
matrix. Then the determinant of an n X n matrix is defined in terms of its cofactors.

Definition 2.4.1 (Minor and cofactor). Let A = [a;;] be an n X n matriz.

1. The ij-th minor of A is the determinant M;; of the (n — 1) x (n — 1) submatriz that
remains after deleting the i-th row and the j-th column of A.

2. The ij-th cofactor of A is defined by
Ay = (1) M.
As we can see, when defining cofactors of an n x n matrix, the determinants of (n —1) x (n—1)

matrices are involved. Now we can use cofactor to define the determinant of an n X n matrix
inductively.

LA square matrix S is symmetric if ST = S.
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Definition 2.4.2 (Determinant). Let A = [a;;] be an n x n matriz. The determinant det(A)
of A is defined inductively as follows.

1. If n =1, then det(A) = a1;.

2. If n > 1, then

n
det(A) = Z a1gA1g = a1 Air + aigdiz + - + a1nAug,
k=1

where A;j is the ij-th cofactor of A.
Example 2.4.3. When n = 1,2 or 3, we have the following.
1. The determinant of a 1 x 1 matrixz is
la11| = an
2. The determinant of a 2 X 2 matriz is

ail  a12
a1 a22

= 411022 — 412021

3. The determinant of a 3 X 3 matrix is

a1l al2 a3
N az2 a23 as1 a23 as1  a22
ag1 G2 G23 | = a11 — a2 + ais
az2 ass asy ass asy  as2
asy as2 ass
Example 2.4.4.
4 3 0 1
3 2 01
1 0 0 3
01 2 1
2 01 3 0 1 3 2 1 3 20
= 40 0 3|-3|1 0 3|+0j1 0 3|—1|1 0 O
1 2 1 0 2 1 01 1 01 2
0 3 0 3 0 0
= a2y Y-o[d Tl 2 ))
0 3 1 3 1 0
G U PR
1 0

The following theorem can be proved by induction on n.
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Theorem 2.4.5. Let A = [a;;] be an n X n matriz. Then

det(A) = Z Sign(a)alo(l)a&r@) * Qpo(n),
gESy

where Sy, is the set of all permutatz’onaﬂ of {1,2,--- ,n} and

sign(o) = 1 if 0 is an even permutation,
g | =1 ifo is an odd permutation.

Note that there are n! number of terms for an n x n determinant in the above formula. Here we
write down the 4! = 24 terms of a 4 x 4 determinant.

(11022033044 — 011022034043 — 011023032044 + 11023034042

ail ai2 aiz ai4 +0a11a24a32a43 — 011024033042 — 12021033044 + 012021034043
G21 G22 Q23 G24 | _ 1012023031044 — (12023034041 — 012024031043 + 012024033041
az1 ag2 a3z az4 | +a13021032044 — G13021034042 — G13022031 044 + 413022034041
a41 Q42 Q43 Q44 +0130240310Q42 — Q13024032041 — 14021032043 + 014021033042

014022031043 — 114022033041 — 414023031042 1 014023032041
By Theorem [2.4.5] it is easy to see the following.

Theorem 2.4.6. The determinant of an n x n matriz A = [a;;] can be obtained by expansion
along any row or column, i.e., for any 1 <1i < n, we have

det(A) = a;1 A1 + aiplio + - + ainAin
and for any 1 < j <n, we have
det(A) = alelj + anAQj +---+ anjAnj.

Example 2.4.7. We can expand the determinant along the 3rd column in Example [2.].7)

S = Wk

— W = O N W
O W N OO
W = = =W

Il
[
N

(-

Theorem 2.4.8. Properties of determinant.

1. det(I) = 1;

2A transposition is a permutation which swaps two numbers and keep all other fixed. A permutation is even,
odd if it is a composition of an even, odd number of transpositions respectively.
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&

6
7.
8
9

10.

Suppose that the matrices A1, Ag and B are identical except for their i-th row (or column)
and that the i-th row (or column) of B is the sum of the i-th row (or column) of Ay and
Ay, then det(B) = det(A1) + det(Ay);

If B is obtained from A by multiplying a single row (or column) of A by the constant k,
then det(B) = kdet(A);

. If B is obtained from A by interchanging two rows (or columns), then det(B) = — det(A);

If B is obtained from A by adding a constant multiple of one row (or column) of A to
another row (or column) of A, then det(B) = det(A);

. If two rows (or columns) of A are identical, then det(A) = 0;

If A has a row (or column) consisting entirely of zeros, then det(A) = 0;

. det(AT) = det(A);

. If A is a triangular matriz, then det(A) is the product of the diagonal elements of A;

det(AB) = det(A) det(B).

All the statements in the above theorem are simple consequences of Theorem [2.4.5| or Theorem
except (10) which will be proved later in this section (Theorem [2.4.16)). Statements (3),
(4), (5) allow us to evaluate a determinant using row or column operations.

Example 2.4.9.

2 2 5 5
1 -2 4 1
-1 2 -2 -2
-2 7 -3 2
0 6 -3 3 R1—>R1—2R2
1 -2 4 1
0 02 -l Ry — R4+ 2R
0 3 5 4 4 4 2
6 -3 3
= —|0 2 -1
3 5 4
2 -1 1
= -3/0 2 -1
3 5 4
-1 1 -1 1
= ()5 a ]S 4)
= —69

We can also use column operations.
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Example 2.4.10.

:—21—1(
-5 9 4

Some determinants can be evaluated using the properties of determinants.

Cy — Cy+2C,
03%03—401
C4—>C4—Cl

Cl—>01—2C3
Cy = Cy+Cs

Example 2.4.11. Let ay, a0, -+, a, be real numbers and

1041042
1 = ay

A = 1 o =«

1 o s

Show that

7%
Qp
7%

det(A) = (x —a1)(z —ag) -+ - (z — a).

38

Solution: Note that A is an (n+1) x (n+41) matrix. For simplicity we assume that o, a9, -, ay,
are distinct. Observe that we have the following 3 facts.

1. det(A) is a polynomial of degree n in z;
2. det(A) = 0 when = = «; for some i;

3. The coefficient of =™ of det(A) is 1.

Then the equality follows by the factor theorem.

Example 2.4.12. The Vandermonde determinant is defined as

1 oz a3 - 2t

1 xy a3 - !
V(l’l,xQ,"' 7~rn) = . . . .

1z, 22 an—t
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Show that
1<i<j<n
Solution: Using factor theorem, the equality is a consequence of the following 3 facts.

1. V(x1, 9, -+ ,xy) is a polynomial of degree n(n —1)/2 in x1,x9, -+ , xy;
2. For any i # j, V(x1,22,- -+ ,2,) = 0 when z; = xj;

3. The coefficient of zox3 -2t of V(z1, 29, -+ ,3y) is 1.

O
Now we are going to prove (10) of Theorem The following lemma says that the statement
is true when one of the matrix is an elementary matrix.

Lemma 2.4.13. Let A = [a;;] be an n x n matriz and E be an n x n elementary matriz. Then
det(EA) = det(E) det(A).

Proof. The statement can be checked for each of the 3 types of elementary matrix F. O

Definition 2.4.14. Let A be a square matriz. We say that A is singular if the system Ax =0
has non-trivial solution. A square matrix is non-singular if it is not singular.

Theorem 2.4.15. The following conditions for an n x n matric A are equivalent.

1. A is non-singular, i.e., the system Ax = 0 has only trivial solution x = 0.

L erists.

A is invertible, i.e., A~
det(A) # 0.
A is row equivalent to 1.

For any n-column vector b, the system Ax = b has a unique solution.

S e

For any n-column vector b, the system Ax = b has a solution.

Proof. We prove (3)<(4) and leave the rest as an exercise. Multiply elementary matrices
E{,E>,--- ,E; to A so that
R=EE, - -EA

is in reduced row echelon form. Then by Lemma [2.4.13] we have
det(R) = det(Eg) det(Eg_1) - - - det(E;) det(A).

Since determinant of elementary matrices are always nonzero, we have det(A) is nonzero if and
only if det(R) is nonzero. It is easy to see that the determinant of a reduced row echelon matrix
is nonzero if and only if it is the identity matrix I. O

Theorem 2.4.16. Let A and B be two n X n matrices. Then

det(AB) = det(A) det(B).
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Proof. If A is not invertible, then AB is not invertible and det(AB) = 0 = det(A) det(B).
If A isinvertible, then A is row equivalent to I and there exists elementary matrices E1, Eq, - - - , Eg
such that

E.E;,_1---E1 = A.

Hence

det(AB) = det(ExE;x_;1---E1B)
= det(Eg)det(Eg_1) - --det(E;) det(B)
= det(ExEg_1---E1)det(B)
= det(A)det(B)

O]

Definition 2.4.17 (Adjoint matrix). Let A be a square matriz. The adjoint matrix of A is
adjA = [4;;]7,
where A;; is the ij-th cofactor of A. In other words,
[adjAl;; = Aj.
Theorem 2.4.18. Let A be a square matriz. Then
A(adjA) = (adjA)A = det(A)I,

where adjA is the adjoint matriz of A. In particular if A is invertible, then

Proof. The second statement follows easily from the first. For the first statement, we have

[Aade]ij = Zail[ade]lj

n
= > ayAy
I=1

= 51']‘ det(A)
where
) L=y
o = { 0, itj
Therefore A(adjA) = det(A)I and similarly (adjA)A = det(A)I. O

Example 2.4.19. Find the inverse of

A:

W Ot >
ot Oy W
N W N
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Solution:
6 3 5 3 5 6
det(A)—4’5 2‘—3‘3 2‘—1—2‘3 5'-4(—3)—3(1)4—2(7)-—1,
6 3 13 2 3 2
5 2 5 2 6 3
-3 4 -3
S R TIETH NE
7T —-11 9
5 6 143 4 3
3 5 3 5 5 6
Therefore
1 -3 4 -3 3 —4 3
A*lz—l -1 2 -2 |=|1 -2 2
N 7 —-11 9 -7 11 -9

Theorem 2.4.20 (Cramer’s rule). Consider the n x n linear system Ax = b, with

where ay,ag, -+ ,a, are the column vectors of A. If det(A) # 0, then the i-th entry of the
unique solution x = (x1,To, -+ ,Tp) s

z;=det(A) 'det([ a1 - a1 b ar - ay, ),

where the matriz in the last factor is obtained by replacing the i-th column of A by b.

Proof. For i =1,2,---  n, we have
€xr; = [A_lb]i

1 .
= oy (iDL

n

(
1
T det(A) ; Al
1
(

det([al o+ a1 b ajp - an])

det(A)

Example 2.4.21. Use Cramer’s rule to solve the linear system

T + 4dz9 + bdxg = 2
dry 4+ 229 + bdxrz = 3 .
—3x1 + 32 — z3 = 1
Solution:
1 4 5
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Thus by Cramer’s rule,

ry = = = —
29 13 —1 29
1 1 2 5 35
-3 1 -1
1 L4 2 23
-3 3 1
O
Exercise 2.4
1. Evaluate the following determinants.
3 1 0 5 3 0 6
(a) | =2 -4 3 (©) 4 6 4 12
5 4 =2 0 2 -3 4
01 -2 2
o 1 2 3
1 4 =2 1 1 1 1
M]3 2 0 @15 29 5 3
-1 4 3 1 2 -2 -3

2. Suppose A is a n X n non-singular matrix and det(A) = a. Find the determinant of the
following matrices in terms of n and a.

(a) AT (c) —A (e) At
(b) A2 (d) 3A (f) adjA

3. For the given matrix A, evaluate A~! by finding the adjoint matrix adjA of A.

2 5 5 2 -3 5 1 3 0
(a) A=| -1 -1 0 b)A=|0 1 -3 ) A=| —2 -3 1
2 4 3 0 0 2 0 1 1

4. Use Cramer’s rule to solve the following linear systems.

4y — x93 — x3 = 1 T + 2z3 = 6
(a) 2¢1 + 2z9 + 3xz3 = 10 (c) —3xr1 + 4xz9 + 6zz3 = 30

51 — 2x9 — 2x3 = -1 —x1 — 2x9 + 3x3 = 8

—x1 4+ 2z9 — 33 = 1 ry — 4dxo + x3 = 6
(b) 21 + 23 = 0 (d) dr1 — x99 + 2x3 = —1

3r1 — 4dx9 + 4dx3 = 2 201 + 2z — 3x3 = —20

5. Show that
1 1

a b ¢ |=(0b-a)c—a)(c—D)
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6. Let a(t), b(t), c(t), d(t) be differentiable functions of t. Prove that

a'(t) V()
c(t

~—
QU

—~
~

~

2.5 Linear equations and curve fitting

Given n + 1 points on the coordinates plane with distinct x-coordinates, it is known that there
exists a unique polynomial of degree at most n which fits the n + 1 points. The formula for this
polynomial which is called the interpolation formula, can be written in terms of determinant.

Theorem 2.5.1. Let n be a non-negative integer, and (zo,yo), (z1,Y1), -, (Tn,yn) be n+ 1
points in R? such that z; # x; for any i # j. Then there exists unique polynomial

p(z) = ap + a1z + agr® + -+ + apa®,

of degree at most n such that p(z;) = y; for all 0 < i < n. The coefficients of p(x) satisfy the
linear system

1 xo a;g R 3 ag 0
1 = ZE% R A al Y1
1 =z, w% sl an Un

Moreover, we can write down the polynomial function y = p(x) directly as

Y
1 zo 3 x5 Yo
2
(T T R T )
1 2 n
Tn T Tn  Yn

Proof. Expanding the determinant, one sees that the equation is of the form y = p(x) where
p(z) is a polynomial of degree at most n. Observe when (x,y) = (x;, y;) for some 0 < i < n, two
rows of the determinant would be the same and thus the determinant must be equal to zero.
Moreover, it is well known that such polynomial is unique. O

Example 2.5.2. Find the equation of straight line passes through the points (zg,y0) and (x1,y1).

Solution: The equation of the required straight line is

1 =z y
1 w0 yo| = 0
1z y

(Yo —y1)x + (w1 — wo)y + (woy1 — 190) = O

g

Example 2.5.3. Find the cubic polynomial that interpolates the data points (—1,4),(1,2),(2,1)
and (3,16).
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Solution: The required equation is

1 =z 22 23 gy
1 -1 1 -1 4
1 1 1 1 2 =0
1 2 4 8 1
1 3 9 27 16
1 oz 22 23 y
1 -1 1 -1 4
0o 2 0 2 -2| =20
0o 3 3 9 -3
0 4 8 28 12
1z 22 28 gy
10 0 0 7
01 0 0 3| =20
00 1 0 -4
00 0 1 2
—7+3m+43:2—2:1:3+y =0
y = 7—3x— 42+ 223

O

Using the same method, we can write down the equation of the circle passing through 3 given
distinct non-colinear points directly without solving equations.

Example 2.5.4. Find the equation of the circle that is determined by the points (—1,5), (5, —3)
and (6,4).

Solution: The equation of the required circle is

2?4 9? zr y 1
(-1)%+5%2 -1 5 1| 0
524 (=32 5 -3 1|
62 + 42 6 4 1
2+y oz oy 1
26 -1 5 1| _
34 5 -3 1]
52 6 4 1
2?4y oz oy 1
2000 1} _
4 1 00
2 010

2?4 y?—dx—2y—20 = 0

Exercise 2.5

1. Find the equation of the parabola of the form y = ax? + bx + ¢ passing through the given
set of three points.
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(a‘) (07 _5)7(27_1)7(3’4) (b) (_2’9)7(173)7(275) (C) (_275)7(_172)’(17_1)
2. Find the equation of the circle passing through the given set of three points.

(a) (_17 _1)7 (67 6)7 (7a 5) (b) (37 _4)3 (5’ 10)? (_97 12) (C) (17 0)’ (0’ _5)7 (_57 _4)

3. Find the equation of a polynomial curve of degree 3 that passing through the points
(_173)7 <O7 5)a (17 7)7 (2a 3)

4. Find the equation of a curve of the given form that passing through the given set of points.

a
=—(1,2),(4,1
O (12),(4,)

ar +b

() y=art L+ 5 (12,220, (440 @)y =20 0.2),0,1),6.)

(@y:a+gﬂL®JZ® (c) y



3 Vector spaces

3.1 Definition and examples

Consider the Euclidean space R™, the set of polynomials and the set of continuous functions
on [0,1]. These sets look very differently. However, they share the same properties that simi-
larly algebraic operations, namely addition and scalar multiplication, are defined on them. In
mathematics, we call a set with these two algebraic structures a vector space.

Definition 3.1.1 (Vector space). A vector space over R consists of a set V' and two algebraic
operations addition and scalar multiplication such that

1. u+v=v+u, foranyu,v eV
(u+v)+w=u+(v+w), forany u,v,weV

There exists 0 € V such thatu+0=04+u=u, foranyueV
For any u € V, there exists —u € V such that u+ (—u) =0
a(u+v)=au+av, foranya € R andu,v €V
(a+bu=au+bu, for any a,b € R andu eV

a(bu) = (ab)u, for any a,b € R andu €V

Sl B N T T

lu=u, foranyueV

Example 3.1.2 (Euclidean space). The set

I
45
R" = i cx; €R
Tn
with addition defined by
1 (! 1+ Y1
x2 Y2 T2 + Y2
+ . = . )
and scalar multiplication defined by
T axq
T2 ax9
a = .
T Ty,

18 a vector space which is called the Euclidean space of dimension n.

Example 3.1.3 (Matrix space). The set of all m X n matrices
Msn = {A 1 A is an m X n matriz.}

with matriz addition and scaler multiplication is a vector space.
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Example 3.1.4 (Space of polynomials over R). The set of all polynomials
P,={ay+aix+ -+ ap_ 12" 1 ag,a1,--- ,an_1 €R.}
of degree less than n over R with addition

(a0 + a1z + -+ ap_12" ) + (bo + b1z + - -+ by_g2" )
= (ag+bo)+ (a1 +b1)x+ -+ (@n_1 + by_1)z" "

and scalar multiplication

alag + a1z + -+ an,w”_l) = aag + aa x + - - - + aap_12" "

18 a vector space.

Example 3.1.5 (Space of continuous functions). The set of all continuous functions
Cla,b] ={f: f is a continuous function on [a,b]}

on [a,b] with addition and scalar multiplication defined by

(f+9)(=) = flx)+g(x)
(af)(z) = a(f(2))

18 a vector space.

3.2 Subspaces

Definition 3.2.1. Let W be a nonempty subset of the vector space V. Then W is a subspace
of V if W itself is a vector space with the operations of addition and scalar multiplication defined

mV.

Theorem 3.2.2. A nonempty subset W of a vector space V' is a subspace of V if and only if it
satisfies the following two conditions.

1. Ifu and v are vectors in W, then u+v is also in W.
2. If uis in W and c is a scalar, then cu is also in W.

Example 3.2.3. In the following examples, W is a vector subspace of V :

1. V is any vector space; W =V or {0}

2. V=R, W ={(x1,22, - ,2,)] €V :a1x1+agxe+-- +a,v, =0}, where ai,az,--- ,an,
are fixed real numbers.

.V = Mayo; W ={A = [a;;] €V : a1 + ag2 = 0}.

3
4. V is the set C[a, b] of all continuous functions on [a,b]; W = {f(x) € V : f(a) = f(b) = 0}.
5.V is the set P, of all polynomials of degree less than n; W = {p(xz) € V : p(0) = 0}.

6

.V is the set P, of all polynomials of degree less than n; W = {p(x) € V : p/(0) = 0}.

Example 3.2.4. In the following examples, W is not a vector subspace of V :
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1. V=RLEW={(z1,22)T €V:z; =1}
2. V=R W ={(z1,22, - ,2,)T €V : 2129 = 0}
3. V= DMyyo; W={A eV :det(A) =0}
Example 3.2.5. Let A € M,,«,, then the solution set of the homogeneous linear system
Ax=0
1s a subspace of R™. This subspace is called the solution space of the system.

Proposition 3.2.6. Let U and W be two subspaces of a vector space V, then

1.UNW={xeV:xeU and x € W} is subspace of V.
22.U+W={u+weV:uecU and w € W} is subspace of V.
3 UUW ={xeV:xeU orxe W} isa subspace of V if and only if U CW or W C U.

Exercise 3.2

1. Determine whether the given subset W of R? is a vector subspace of R3.

(a) W = {(21,22,73) € R3: 29 = 0} (d) W = {(z1, 29, 23) € R3 : 11 = 215}
(b) W = {(z1,72,23) € R® : 23 = 1} (e) W = {(z1,72,23) € R® : 21 + 20 = 23}
(c) W = {(z1,29,73) € R3 : 2129 = 0} (f) W = {(21,22,23) €ER?: 29 + 23 = 1}

2. Determine whether the given subset W of the set P3 of polynomials of degree less than 3
is a vector subspace of Ps.

(a) W ={p(x) € P5:p(0) = 0} (d) W ={p(z) € P3:p'(0) = 0}
(b) W ={p(x) € P3: p(1) = 0} (e) W= {p(z) € P3:p'(0) =p(0)}
(c) W={p(zx) € P3:p(1) =1} (f) W ={p(z) € P5:p(0) =2p(1)}

3. Determine whether the given subset W of the set Mayo of 3 x 3 matrics is a vector subspace
of M. 3x3-

(a) W={<CC‘ Z)EMQXQ:a+d:0} (c) W ={A € Msy3: det(A) =1}

OO)W_{(Z Z)Eszz:ad—l} (W =AM AT = A

3.3 Linear independence of vectors

Definition 3.3.1. Let vi,va, .- ,vi € V. A linear combination of vi,vo, -+ Vi is a vector
in'V of the form

C1vy1 + cove + - - - + iV, 617023"'7cn€R-
The span of vi,vo, -+, vy is the set of all linear combination of vi,vo, -+, vy and is denoted

by span{vy,va,--- ,vi}. If W is a subspace of V' and span{vi,va,--- ,vi} = W, then we say
that vi,ve, -+, vy is a spanning set of W or vi,vo, -+, vy span the subspace W .
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Theorem 3.3.2. Let vi,va,--- ,vp € V. Then
Span{vlv Vo, )Vk}

is a subspace of V.

Example 3.3.3. Let V = R3.

1. If vq 1,0,0)" and vo = (0,1,0)7, then span{vy,va} = {(a, 3,0)" : a, B € R}.

= (
2. If vi = (1,0,0)T, vy = (0, 1,O)T and vs = (0,0, 1)T, then span{vy,ve,v3} =V.
3. Ifvi = (2,0,1)T and vo = (0,1, -3)T, then span{vy,va} = {(2a, B,a — 38)T : a, B € R}.

4. Ifvi=(1,-1,007, vo = (0,1,-1)T and v3 = (—1,0,1)T, then
span{vi,va, v3} = {(z1, 22, 23)" : 21 + 22 + 23 = 0}.

Example 3.3.4. Let V = P5 be the set of all polynomial of degree less than 3.

1. If vi = x and vy = 22, then span{vy,va} = {p(z) € V : p(0) = 0}.
2. If vi =1, vo = 3z — 2 and v3 = 2z + 1, then span{vy, vy, vs} = span{vy, vy} = P;.

3. Ifvi=1—22,vo =x+2 and v3 = 22, then 1 = vi+v3, £ = —2v| +vo—2v3 and 22 = vs.
Thus span{vy,va, v3} contains span{1l,z,x?} = P3. Therefore span{vy,va,v3} = Ps.

Example 3.3.5. Let w = (2,-6,3)T € R?, vi = (1, -2, —1)T and vo = (3, —5,4)T. Determine
whether w € span{vy, va}.

Solution: Write

1 3 2
C1 -2 + c2 -5 = -6 |,
-1 4 3
that is
1 3 2
—2 -5 < “l > =| -6
~1 4 “ 3
The augmented matrix
1 3 2
-2 —-5| -6
-1 4| 3

can be reduced by elementary row operations to row echelon form

1 3] 2
0 1|-2
0 019

Since the system is inconsistent, we conclude that w is not a linear combination of v and vo.[]

Example 3.3.6. Let w = (—7,7,11)T € R, vi = (1,2,1)7, vo = (—4,-1,2)T and v3 =
(—=3,1,3)T. Express w as a linear combination of vi, vo and vs.
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Solution: Write

1 —4 -3 -7
c1 2 + o —1 + c3 1 = 7 R
1 2 11
that is
1 -4 -3 c1 -7
2 -1 1 co | = 7
1 2 3 c3 11
The augmented matrix
1 -4 -3|-7
2 -1 1 7
1 2 3 | 11
has reduced row echelon form
1 0 1|5
01 1|3
0 0 0|0

The system has more than one solution. For example we can write
w = 5v] + 3vag,

or
w = 3vy + vo + 2v3.

Example 3.3.7. Let vi = (1,-1,0)", vo = (0,1, -1)" and v3 = (—1,0,1)T. Observe that
1. One of the vectors is a linear combination of the other. For example

V3 = —V] — Va.

2. The space span{vi, vy, v3} has a smaller spanning set. For example
span{vy, va} = span{vy, vz, v3}.

3. There exists numbers ci,ca,c3 € R, not all zero, such that c1vi + covy + cgvy = 0. For
example
vi+ve+vy=0.

Definition 3.3.8. The vectors vi,va, -+, Vi in a vector space V are said be be linearly inde-
pendent if the equation
vy +covo+ -+ v =0

has only the trivial solution ¢ = co = --- = ¢ = 0. The vectors vy,Vva, -,V are said be be
linearly dependent if they are not linearly independent.

Theorem 3.3.9. Let V' be a vector space and vi,va, -+ , v € V. Then the following statements
are equivalent.

1. The vectors vi,va, -,V are linearly independent.

2. None of the vectors is a linear combination of the other vectors.
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3. There does not exist a smaller spanning set of span{vi, vy, ,Vi}.
4. Ewery vector in span{vi,va, -, v} can be expressed in only one way as a linear combi-
nation of vi,vo, -+ , V.

Example 3.3.10. The standard unit vectors

e = (170707"' 70)T
€ = (031707""0)T

e, = (070707"' a]-)T
are linearly independent in R™.

Example 3.3.11. Let vi = (1,2,2,1)7, vo = (2,3,4,1)7, v3 = (3,8,7,5)T be vectors in R*.
Write the equation c1vy + cava + c3vy = 0 as the system

cit + 2c + 3c3 =
2ci + 3¢ + 8¢z =
2c1 + 4co + Tcs
cT + ¢ 4+ beg =

o O O O

The augmented matriz of the system reduces to the row echelon form

1 2 310
01 =20
00 110
00 010

Thus the only solution is ¢y = cg = c3 = 0. Therefore vi,va,v3 are linearly independent.

Example 3.3.12. Let vi = (2,1,3)T, vo = (5,-2,4)T, v3 = (3,8,-6)T and v4 = (2,7,—4)T
be vectors in R3. Write the equation c1vi + cava + c3vs + c4vy = 0 as the system

1 4+ beo 4+ 3¢5 + 2¢4 = 0
C1 — 202 + 863 + 7C4 =0
3ci + 4co — 6cg3 — 4dey = 0

Since there are more unknowns than equations and the system is homogeneous, it has a nontrivial
solution. Therefore vi,va,vs, vy are linearly dependent.

Theorem 3.3.13.

1. Two nonzero vectors vi,vy € V are linearly dependent if and only if they are proportional,
i.e., there exists ¢ € R such that vo = cvy.

2. If one of the vectors of vi,vo,--- ,vi € V is zero, then vi,vo,--- , vy are linearly depen-
dent.
3. Let vi,vay,---,v, be n vectors in R™ and
A=1[vivy -+ vy
be the n X n matriz having them as its column vectors. Then vy,va,--- , Vv, are linearly

independent if and only if det(A) # 0.
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4. Let vi,vo, -+ vy be k vectors in R™, with k > n, then vi,vo,---

dent.

Proof.

1. Obvious.
2. We may assume vi = 0. Then
1-vi+0-vo+---4+0-vp=0.
Therefore vq, vy, -+, vy are linearly dependent.

3. The vectors vi,va, -+, v, are linearly independent
< The system Ax = 0 has only trivial solution.
< A is nonsingular
< det(A) #0.

4. Since the system
vy +covo+ -+ epvi =0

52

, Vi are linearly depen-

has more unknowns than the number of equations, it must have nontrivial solution for

c1,¢2, -+ ,cp. Therefore vi,vs,--- v, are linearly dependent.

Exercise 3.3

O]

1. Determine whether the given set of vectors are linearly independent in R3.

(a) Vlf( )V2f(7—173)

(b) v (1 0 1),vo = (—2,0,—2)

(c) v1 = (1,0, 0) =(1,1,0),v3 = (1,1,1)

(d) vi=(1,— ) =(0,1,-1),vs = (—1,0,1)

(e) vi=(3,— ) vy = (2,0,—1),vy =(1,-3,-2)
(f) vi =(1,— ) vo = (3,0,1),v3 = (1,-1,2)

2. Suppose Vi, Vs, v3 are linearly independent vectors in R3. Determine whether the given

set uy, ug, us of vectors are linearly independent.

(a

) u; = vi,ug = 2vy,uz = 3v3

(b) w1 =vi,ug = vy +va,u3 = vy + vy + V3
)
)

(c
(d

u; = vi+2vg,up = 2vy —4va,u3 = —vi +3va

u; = 2vy) —vo, Uy = 2vy — v3, U3 = 2vy] + Vg — V3

3. Prove that if vq, v, v3 are linearly independent vectors, then vy 4+ vy, vo +vs, vy + vg are

linearly independent vectors.

4. Prove that if a set of vectors contains the zero vector, then it is linearly independent.

5. Prove that if S, T are two sets of vectors with S C T" and T is linearly independent, then

S is linearly independent.

6. Let V be a vector space and W be a vector subspace of V. Suppose vi,va, -+, vy are
linearly independent vectors in W and v be a vector in V' which does not lie in W. Prove

that vi,ve, -+, vy, v are linearly independent.
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3.4 Bases and dimension for vector spaces
Definition 3.4.1. A set S of vectors in a vector space V is called a basis for V if

1. S is linearly independent, and
2. S spans V.
Example 3.4.2.

1. The vectors

e = (170707"' 70)T
€ = <O71707"' 70)T
e, = (0,0,0,"' 71)T

constitute a basis for R™ and is called the standard basis for R".
2. The vectors vi = (1,1, 1), vo = (0,1, 1)T and v3 = (2,0,1)T constitute a basis for R>.

Theorem 3.4.3. If V. = span{vy,vay,---,v,}, then any collection of m wvectors in V, with
m > n, are linearly dependent.

Proof. Let ui,us, -+ ,u, € V, m >n. Then we can write
u; = a11vi+tappve+ -+ a1y
Uy = a21Vi+avy+ -+ a2,y
Wy = AmiVl+ Gm2Ve + -+ GmnVn.
We have

E CLijVj

ciu] +coug + - +Cply, =

i

Consider the

aiicr + azicac + -+ amicn, = 0

aiac1 + azcy + -0 4+ amac, = 0

aipc1 + a2 + -+ ampCm = 0
where c1,co,- -+ , ¢, are variables. Since the number of unknowns is more than the number of
equations, there exists nontrivial solution for ¢y, co, - , ¢, and

m
Zciaij =0, forj=1,2,---,n
i=1

This implies that ciu; + coug + -+ + ¢y, = 0 and therefore ug,us, -+ ,u,, are linearly
dependent. O
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Theorem 3.4.4. Any two finite bases for a vector space consist of the same number of vectors.

Proof. Let {uj,ug, - ,u,}and {vy,ve, - ,v,} betwo bases for V. Since V = span{vy,va, -+ , v, }
and {uj,uy, - ,u,,} are linearly independent, we have m < n by Theorem Similarly, we
have n < m. O

The above theorem enables us to define the dimension of a vector space.

Definition 3.4.5. The dimension of a vector space V' is the number of vectors of a finite basis
of V. We say that V is of dimension n (or V is an n-dimensional vector space) if V' has a
basis consisting of n vectors. We say that V is an infinite dimensional vector space if it does
not have a finite basis.

Example 3.4.6.

1. The Euclidean space R™ is of dimension n.

2. The polynomials 1, z, x>, -,z constitute a basis of the set for the set P, of polynomials

of degree less than n. Thus P, is of dimension n.
3. The set of all m x n matrices My, «y s of dimension mn.
4. The set of all continuous functions Cla,b] is an infinite dimensional vector space.

Theorem 3.4.7. Let V' be an n-dimension vector space and let S = {v1,va, -+ ,v,} be a subset
of V consists of n vectors. Then the following statements for S are equivalent.

1. S is a basis for V.
2. S spans V.

3. S is linearly independent.

Proof. We need to prove that S is linearly independent if and only if span(S) = V.

Suppose S is linearly independent and span(S) # V. Then there exists v € V such that
v ¢ span(S). Since S U {v} contains n + 1 vectors, it is linearly dependent by Theorem
Thus there exists ¢y, ¢, -+, ¢, cnt1, not all zero, such that

c1v1 +covo + -+ e v + e v = 0.

Now ¢,,4+1 = 0 since v ¢ span(S). This contradicts to the assumption that {vi,va, -+, v,} are
linearly independent.

Suppose span(S) = V and S is linearly dependent. Then by Theorem there exists a proper
subset S” C S consists of k vectors, k < n, such that span(S’) = V. By Theorem any set
of more than k vectors are linearly dependent. This contradicts to that V is of dimension n. [

Theorem 3.4.8. Let V' be an n-dimension vector space and let S be a subset of V.. Then

1. If S is linearly independent, then S is contained in a basis for V.

2. If S spans V, then S contains a basis for V.
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Proof. 1. Suppose S is linearly independent. If span(S) = V, then S is a basis for V. If

span(S) # V, then there exists vi € V such that vi ¢ span(S). Now S U {v;} is linearly
independent. Similarly if span(S U {v;}) # V, there exists vy € V such that S U {vy,va}
is linearly independent. This process may be continued until SU{vy,va,- -, vk} contains
n vectors. Then S U {vy, vy, -+, vi} constitutes a basis for V.

. Suppose S spans V. If S is linearly independent, then S is a basis for V. If S is linearly
dependent, then there exists vi € S which is a linear combination of the remaining vectors
in §. After removing v from .S, the remaining vectors will still span V. This process may
be continued until we obtain a set of linearly independent vectors consisting of n vectors

which constitutes a basis for V.

Theorem 3.4.9. Let A be an m X n matriz. The set of solutions to the system

Ax=0

O]

form a vector subspace of R™. The dimension of the solution space equals to the number of free

variables.

Example 3.4.10. Find a basis for the solution space of the system

3r1 + 6x9 — x3 — bxry + bdrs = 0
201 + 4x9 — x3 — 3x4 + 225 = 0
3r1 + 6z — 2x3 — 4dxy + x5 = 0.

Solution: The coefficient matrix A reduces to the row echelon form

-2 3
-1 4
0

1 2
0 0
00 0

o = O

The leading variables are z1,x3. The free variables are xy,z4,25. The set {(—2,1,0,0,0)7,

(2,0,1,1,0)", (=3,0,—4,0,1)T} constitutes a basis for the solution space of the system.

Exercise 3.4
1. Find a basis for the plane in R? with the given equation.
(a) v+2y—42=0 (b) z=3zx—y (¢) 3z+y=0

2. Find a basis for the solution space of the given homogeneous linear system.

(a) Ty — 2x9 + 3xz3 = 0
2131 — 3:172 — T3 = 0
(b) 1 + 3x2 + 4x3 = 0
3rz1 + 8xo 4+ Tzz = 0
() 1y — 3x9 + 223 — 4dxy = 0
201 — bz 4+ Txs — 3x4 = 0
X — 31:2 — 9.%3 — 5(E4 =0
(d) 201 + xo0 — 4dx3 + 1llzy = O
1 + 39 4+ 3x3 + 13z4 = 0

g
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1 + bdryg + 13x3 + 1l4zy = 0
(e) 2x1 4+ bSx9 + 1llzg + 12x4
201 4+ Txo + 17xz3 + 1924 = 0

Il
o

ry — 3x9 — 10x3 4+ bdbxy = 0
(f) r1 + 4x9 + 1llzg — 2z4 = 0
1 + 3rx9 + 8rz3 — x4 = 0

3.5 Row and column spaces

Definition 3.5.1. Let A be an m X n matriz.

1. The null space Null(A) of A is the solution space to Ax = 0. In other words, Null(A) =
{xeR:Ax=0.}.

2. The row space Row(A) of A is the vector subspace of R™ spanned by the m row vectors
of A.

3. The column space Col(A) of A is the vector subspace of R™ spanned by the n column
vectors of A.

It is easy to write down a basis for each of the above spaces for row echelon form.

Theorem 3.5.2. Let R be a row echelon form. Then

1. The set of vectors obtained by setting one free variable equal to 1 and other free variables
to be zero constitutes a basis for Null(R).

2. The set of non-zero rows constitutes a basis for Row(R).
3. The set of columns associated with lead variables constitutes a basis for Col(R)

Example 3.5.3. Let

1 -3 00 3
0 0 1 0 -2
A= 0o 0 o1 7
0 0 00 O

Find a basis for Null(A), Row(A) and Col(A).
Solution:
1. The set {(3,1,0,0,0)7,(=3,0,2,—7,1)T} constitutes a basis for Null(A).
2. The set {(1,-3,0,0,3),(0,0,1,0,—2),(0,0,0,1,7)} constitutes a basis for Row(A).

3. The set {(1,0,0,0)T,(0,1,0,0)7,(0,0,1,0)"} constitutes a basis for Col(A).

O

To find bases for the null space, row space and column space of a general matrix, we may find
a row echelon form of the matrix and use the following theorem.

Theorem 3.5.4. Let R be the row echelon form of A. Then
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1. Null(A) = Null(R).
2. Row(A) = Row(R).

3. The column vectors of A associated with the column containing the leading entries of R
constitute a basis for Col(A).

Example 3.5.5. Find a basis for the null space Null(A), a basis for the row space Row(A) and
a basis for the column space Col(A) where

1 -2 3 2 1
2 —4 8 3 10
A= 3 -6 10 6 5
2 —4 7 4 4
Solution: The reduced row echelon form of A is
1 -2 0 0 3
0O 0 1 0 2
0O 0 01 —4
0O 0 0 0 O

Thus

1. the set {(2,1,0,0,0)T,(=3,0,—2,4,1)T} constitutes a basis for Null(A).
2. the set {(1,-2,0,0,3),(0,0,1,0,2),(0,0,0,1,—4)} constitutes a basis for Row(A).

3. the 1st, 3rd and 4th columns contain leading entries. Therefore the set {(1,2,3,2)7,
(3,8,10,7)T, (2,3,6,4)T} constitutes a basis for Col(A).

Definition 3.5.6. Let A be an m x n matriz. The dimension of

1. the solution space of Ax = 0 is called the nullity of A.
2. the row space is called the row rank of A.

3. the column space is called the column rank of A.

To find the above three quantities of a matrix, we have the following theorem which is a direct
consequence of Theorem and Theorem [3.5.4]

Theorem 3.5.7. Let A be a matrix.

1. The nullity of A 1is equal to the number of free variables.
2. The row rank of A is equal to the number of lead variables.

3. The column rank of A is equal to the number of lead variables.

Now we can state two important theorems for general matrices.

Theorem 3.5.8. Let A be an m x n matrixz. Then the row rank of A is equal to the column
rank of A.
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Proof. Both of them are equal to the number of leading entries of the reduced row echelon form
of A. O

The common value of the row and column rank of the matrix A is called the rank of A and
is denoted by rank(A). The nullity of A is denoted by nullity(A). The rank and nullity of a
matrix is related in the following way.

Theorem 3.5.9 (Rank-Nullity Theorem). Let A be an m x n matriz. Then
rank(A) + nullity(A) = n
where rank(A) and nullity(A) are the rank and nullity of A respectively.

Proof. The nullity of A is equal to the number of free variables of the reduced row echelon form
of A. Now the left hand side is the sum of the number of leading variables and free variables
and is of course equal to n. O

We end this section by proving a theorem which will be used in Section
Theorem 3.5.10. Let A and B be two matrices such that AB is defined. Then

nullity(B) < nullity(AB) < nullity(A) + nullity(B)

Proof. It is obvious that Null(B) C Null(AB). Thus we have nullity(B) < nullity(AB).
Observe that Null(AB) = {v : Bv € Null(A)}. Let uj,ug,---,u; be vectors such that
{Buj,Buy, - ,Buy} is a basis for Null(A)NCol(B) and {vi,va,---,v;} be a basis for Null(B).
We are going to prove that uj,ug,--- ,ug, vi, va,- -+ ,v; constitute a basis for Null(AB). First
we prove that they are linearly independent. Suppose

ciug +coug + -+ cpup +divi +dava + -+ divi =0
Multiplying B from the left, we have
cBuy + Bus + - -+ ¢.Bug + diBvy + doBvy + - +d;Bv; =0
and since vq,va,---,v; € Null(B), we obtain

ciBu; + coBus +--- +¢;Buy, =0

This implies that ¢; = ¢co = -+ = ¢ = 0 since Buj, Bug,--- , Buy are linearly independent.
Thus

divi+davo+ -+ dvi=0
and consequently dy = do = -+ = d; = 0 since vi,va, - ,Vv; are linearly independent. Hence
up,ug, - ,U, Vi, Ve, -, v are linearly independent.
Second we prove that uj,ug, -+ ,ug, vi,va, -+, v; span Null(AB). For any v € Null(AB), we

have Bv € Null(A) N Col(B). Since Buj,Buy, - ,Buy span Null(A) N Col(B), there exists
c1,Ca,-+ ,c such that
Bv = ciBu; + @Bus + - - - + ¢, Buy

It follows that
v — (ciuy + coug + - - - + ¢puy) € Null(B)
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and since v, va,---,v; span Null(B), there exists dy,ds, - - ,d; such that

v—(cu teug+ - o) =divi+va + o+ dvy

Thus

V=cuj +coug + -+ cpup +divy +dovo + - - - + djvy
This implies that uy,ug, - ,ug, vy, ve, -+, v; span Null(AB). Hence we completed the proof
that uy,ug, -+, ug, vi,va, -, v; constitute a basis for Null(AB).

Observe that k£ = dim(Null(A) N Col(B)) < nullity(A) and ! = nullity(B). Therefore we have

nullity(AB) = k + [ < nullity(A) + nullity(B)

Exercise 3.5

1. Find a basis for the null space , a basis for the row space and a basis for the column space
for the given matrices.

1 2 3 1 -2 -3 -5
(a) 1 5 -9 1 4 9
25 2 @17 5 7 1
1 1 1 1 2 2 6 -3
(b) 31 -3 4
2 5 11 12 11331
1 (f) 2 3 7 8 2
3 =613 2378 3
(c) 1 -2 01 2 31 7 5 4
1 -2 2 0 3
11 -1 7 1 1 3 0 3
1 4 5 16 -1 0 -2 1 -1
D173 3 13 @ 9 3 7 1 3
2 5 4 23 -2 4 0 7 6
2. Find a basis for the subspace spanned by the given set of vectors.
(a) V1= (17 ) (27_1)37 1),V3 = (571)476)
(b) V1 = (17 1 2 3) (273?4’1)5‘/3: (1,1,2,1),V4: (4711877)
(C) vl (372 2 2) (271727 1)7V3 = (4737273)7V4: (1727 _274)
(d) V1= (17 2a17172) (_17370727_2)7V3 = (071717374)ﬂv4: (1727571375)
(e) vi=(1,-3,4,-2 5) =(2,-6,9,—1,8),v3 = (2,—-6,9,—-1,9), vy = (—1,3,—-4,2,-5)

3. Let A be an m x n matrix and B be an n x k matrix. Let r4 = rank(A), rp = rank(B)
and rap be the rank of A, B and AB respectively. Prove that

ra+rp—n<rsap <min(rs,rp)

where min(r4,75) denotes the minimum of r4 and rp.
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3.6 Orthogonal vectors in R"

Definition 3.6.1. An inner product on a vector space V is a function that associates with
each pair of vectors u and v a scalar (u,v) such that, for any scalar ¢ and u,v,w € V,

1. {(u,v) = (v,u)

(
2. (u+v,w)=(u,w)+ (v,w)
3. (eu,v) = cfu,v)
4. (u,u) >0 and (u,u) =0 if and only ifu=20

An inner product space is a vector space V together with an inner product defined on V.
Example 3.6.2.

1. (Dot product) Let u = (u,--- ,un)? and v = (vi,---,v,)T be vectors in R®. The dot

product defined by

u-v:uTV:ulvl—i-ugvg—i-"-—l—unvn

is an inner product on R™.

2. Let P, be the set of all polynomials of degree less than n. Let x1,x2,--- ,x, be n distinct
real numbers and p(z),q(z) € P,. Then

(p(x), q(x)) = p(x1)q(z1) + p(x2)q(@2) + - - - + p(@n)q(2n)
defines an inner product on P.

3. Let Cla,b] be the set of all continuous function on [a,b] and f(x),g(x) € Cla,b]. Then

b
<mmwm=/fmmmm

defines an inner product on Cla,b].

Definition 3.6.3. Let V be an inner product space and u € V. The length, or magnitude,
of u is defined as
luf = v/(u, u).

The distance between two vectors u and v in 'V is defined as
lu —v|.

Theorem 3.6.4 (Cauchy-Schwarz inequality). Let V' be an inner product space and u,v € V.
Then
[(u,v)| < [ullv]|

and equality holds if and only if u =0 or v = tu for some scalar t.

Proof. When u = 0, the inequality is satisfied trivially. If u # 0, then for any real number ¢,
we have

[tu — v|?
((tu—v), (tu —v))
t2(u,u) — 2t(u,v) + (v,v)

(AVARAVARIV]
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Thus the quadratic function #?(u,u) — 2¢t(u,v) + (v, v) is always non-negative. Hence its dis-
criminant

4((u, v))? = 4((u, w)((v, v))

is non-positive. Therefore

((w,v)? < ((w,w)((v,v))
{u,v)[? < Juflv]?
[(u,v)| < |ullv]
and equality holds if and only if u = 0 or v = tu for some ¢. O

Let u and v be nonzero vectors in an inner product space, by Cauchy-Schwarz inequality we

have
Ry

<1
ul|v]|
This enables us to make the following definition.

Definition 3.6.5. Let u, v be nonzero vectors in an inner product space. Then the angle between
u and v is the unique angle 0 between 0 and 7 inclusively such that

cosf = M
lul|v|

Definition 3.6.6. We say that two vectors u and v are orthogonal in an inner product space
Vif (u,v) =0.

Theorem 3.6.7 (Triangle inequality). Let u and v be vectors in an inner product space. Then
[u+v| < luf+|v].
Proof. We apply Cauchy-Schwarz inequality to find that

u+v)? = (ut+v,utv)
(u,u) + 2(u,v) + (v,v)

< Jul? + 2fullv] + v
2
= (Ja]+[v])*
O
Theorem 3.6.8. Let vy, va, -, vy be mutually orthogonal nonzero vectors in an inner product
space V. Then they are linearly independent.
Proof. Suppose
c1vy +cove+ -4+ cpvp = 0.
For each 1 < i < k, we take the inner product of each side with v;, we have
Ci<VZ‘,VZ‘> = O
Since v; is a nonzero vector, we have ¢; = 0. Thus ¢; = ¢ = -+ = ¢ = 0 and therefore

V1i,Ve, -+, Vg are linearly independent. O
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Definition 3.6.9 (Orthogonal complement of a subspace). Let W be a vector subspace of an
inner product space V. We say that a vector u € V is orthogonal to W if u is orthogonal to
every vector in W. The orthogonal complement of W in V is

Wt ={ueV:(uw)=0, for al we W}.

Theorem 3.6.10 (Properties of orthogonal complements). Let W be a vector subspace of an
mner product space V. Then

1. Wt is a vector subspace of V.

2. Wtnw = {0}

3. If V is finite dimensional, then dim(W) + dim(W+=) = dim(V).
4. W C (WHL. If V is finite dimensional, then (WL)+ = W.

5. If S spans W, then u € W if and only if u is orthogonal to every vector in S.

Theorem 3.6.11. Let vy, va, -+, vy, be (column) vectors in R™ and W = span{vy,va, - ,Viu}.
Then

W+ = Null(A)
where A is the m X n matriz with row vectors Vf, V2T, vl

Proof. For any x € R™, we have

erJ_ A (VmX):Oforanyi:l,Q,...7m
& x e Null(A).

O
To find a basis for the orthogonal complement W+ of a subspace of the form W = span{v1,va,--- , v},
we may write down a matrix A using v, vl ... vl as row vectors and then find a basis for

Null(A).
Example 3.6.12. Let W = span{(1,—3,5)"}. Find a basis for W+.

Solution: Using (1,—3,5) as row vector, we obtain A = (1,—3,5) which is in reduced row
echelon form. Thus the vectors (3,1,0)7 and (—5,0,1)7 constitute a basis for W+ = null(AT).
(]

Example 3.6.13. Let W be the subspace spanned by (1,2,1,-3,-3)T and (2,5,6,—10, —12)T".
Find a basis for W+.

Solution: Using (1,2,1,—3,—3) and (2,5,6,—10,—12) as row vectors, we obtain
1 21 -3 -3
A_(2 5 6 —10 —12)
which has reduced row echelon form
1 0 =7 5 9
01 4 -4 —6 /-

Thus the vectors (7, —4,1,0,0)7,(—5,4,0,1,0)7,(-9,6,0,0,1)T constitute a basis for W+. [
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Example 3.6.14. Find a basis for the orthogonal complement of the subspace spanned by
(1,2,-1,1D)7, (2,4,-3,0)" and (1,2,1,5)7.

Solution: Using (1,2,—1,1), (2,4,-3,0), (1,2,1,5) as row vectors, we obtain
1 2 -1 1
A=|24 -3 0
1 2 1 5
which has reduced row echelon form
12 0 3
0 0 1 2
0000

Thus the vectors (—2,1,0,0)7 and (—3,0,—2,1)7 constitute a basis for

span{(1,2,-1,1)T, (2,4, -3,0)7,(1,2,1,5)7}+.

Exercise 3.6

1. Find a basis for the orthogonal complement of the subspace of the Euclidean space spanned
by given set of vectors.

(a) {(1,2,3)}

(b) {(1,-2,-3,5)}

(c) {(1,3,2,4),(2,7,7,3)}

(d) {(1,-3,3,5),(2,-5,9,3)}

(e) {(1,2,5,2,3),(3,7,11,9,5)}

(f) {(2,5,5.4,3),(3,7,8,8,8)}

(g) {(1,2,3,1,3),(1,3,4,3,6),(2,2,4,3,5)}
(h) {(1,1,1,1,3),(2,3,1,4,7),(5,3,7,1,5)}

2. Prove that for any vectors u and v in an inner product space V', we have
(a) [u+ v+ [u—v|? =2/ul® + 2|v|?
(b) [u+v[* = |u—v[?=4(u,v)

3. Let V be an inner product space. Prove that for any vector subspace W C V', we have
Wnwt = {0}.

4. Let V be an inner product space. Prove that for any vector subspace W C V', we have

W c (W+)+. (Note that in general (W) # W.)

5. Let V be a vector space and vi,va,---,vE € V be non-zero vectors in V such that
(vi,vi) = 0 for any 4,5 = 1,2,--- ,k with ¢ # j. Prove that vi,va, -, v} are linearly
independent.



4 Second and higher order linear equations

4.1 Second order linear equations

In first part of this chapter, we consider second order linear ordinary linear equations, i.e., a
differential equation of the form

d*y dy
) +P(t)$ +q(t)y = g(1)

where p(t) and ¢(t) are continuous functions. We may let
Lyl =y" +pt)y" +a(t)y

and write the equation as the form
Lly] = g(t).

The above equation is said to be homogeneous if g(t) = 0 and the equation
Lly] =0

is called the associated homogeneous equation. First we state two fundamental results of
second order linear ODE.

Theorem 4.1.1 (Existence and uniqueness of solution). Let I be an open interval and t, € I.
Let p(t),q(t) and g(t) be continuous functions on I. Then for any real numbers yo and yj, the
wnitial value problem

{y”+p(t)y’+Q(t)y= (t), tel
y(to) = wo, ¥ (to) = o

has a unique solution on I.

The proof of the above theorem needs some hard analysis and is omitted. But the proof of the
following theorem is simple and is left to the readers.

Theorem 4.1.2 (Principle of superposition). If y1 and ya are two solutions to the homogeneous
equation

then y = c1y1 + coye is also a solution for any constants c1 and cs.

The principle of superposition implies that the solutions of a homogeneous equation form a
vector space. This suggests us finding a basis for the solution space. Let’s recall the definition
of linear independency for functions (See Definition for linear independency for vectors in
a general vector space).

Definition 4.1.3. Two functions u(t) and v(t) are said to be linearly dependent if there
exists constants c1 and ca, not both zero, such that ciu(t) + cov(t) = 0 for allt € I. They are
said to be linearly independent if they are not linearly dependent.

Definition 4.1.4 (Fundamental set of solutions). We say that two solutions y1 and yo form a
fundamental set of solutions of a second order homogeneous linear differential equation if
they are linearly independent.
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Definition 4.1.5 (Wronskian). Let y; and y2 be two differentiable functions. Then we define
the Wronskian (or Wronskian determinant) of y1, y2 to be the function

W0 = Wm0 = | 40 20 = 000 ~ s 0m (0

Wronskian is used to determine whether a pair of solutions is linearly independent.

Theorem 4.1.6. Let u(t) and v(t) be two differentiable functions on open interval I. If
W (u,v)(to) # 0 for some ty € I, then u and v are linearly independent.

Proof. Suppose ciu(t) + cov(t) = 0 for all ¢ € I where ¢1, co are constants. Then we have

Clu(to) + Cg’l)(to) = 0,
Clu,(to) + Cgvl(to) = 0.

(v v ) (5)=(5)
() o))

is non-singular since its determinant W (u,v)(to) is non-zero by the assumption. This implies
by Theorem that ¢; = ca = 0. Therefore u(t) and v(t) are linearly independent. O

In other words,

Now the matrix

Remark: The converse of the above theorem is false. For example take u(t) = t3, v(t) = |t|>.
Then W (u,v)(t) = 0 for any ¢t € R but u(t), v(t) are not linearly independent.

Example 4.1.7. The functions y1(t) = €' and y2(t) = e=2 form a fundamental set of solutions
of
y// + y/ _ 2y — 0

since W (y1,y2) = e (=2e72) — el(e72) = —3e~! is not identically zero.

Example 4.1.8. The functions y1(t) = €' and yo(t) = te! form a fundamental set of solutions
of
y' =2 +y=0

since W (y1,y2) = et(tel + et) — et(te') = €' is not identically zero.

Example 4.1.9. The functions yi(t) = 3, y2(t) = cos®>t and y3(t) = —2sin’t are linearly
dependent since
2(3) + (—6) cos? t 4 3(—2sin?¢) = 0.

One may justify that the Wronskian

Y Y2 Y3
Wy, y2.u3) = | v1 o v3 | =0.

1 /! /!
Y Y2 Y3

Example 4.1.10. Show that y1(t) = tY/? and yo(t) = t~! form a fundamental set of solutions
of
2%y + 3ty —y =0, t>0.
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Solution: It is easy to check that y; and ys are solutions to the equation. Now

£1/2 1

3.3/
%t‘l/Q 42 —5t

W(y1,y2)(t) = =3

is not identically zero. We conclude that y; and yo form a fundamental set of solutions of the
equation. ]

Theorem 4.1.11 (Abel’s Theorem). Ify; and ya are solutions to the second order homogeneous
equation
Lly] =y" +p(t)y' + q(t)y =0,

where p and q are continuous on an open interval I, then

W, 1)(t) = coxp (— / p(t)dt) ,

where ¢ is a constant that depends on y1 and yo. Furthermore, W (y1,y2)(t) is either identically
zero on I or never zero on I.

Proof. Since y; and y» are solutions, we have

{y’{+p(t)yi+q(t)y1 = 0
ys +p(t)yy +q(t)y2 = 0.

If we multiply the first equation by —yo, multiply the second equation by y; and add the resulting
equations, we get

(y1y5 — yiy2) + () (Y15 — Yiy2)
W' +pt)W =

which is a first-order linear and separable differential equation with solution

W(t) = cexp (- / p(t)dt) ,

where ¢ is a constant. Since the value of the exponential function is never zero, W (yi,y2)(t) is
either identically zero on I (when ¢ = 0) or never zero on I (when ¢ # 0). O

Let y1 and y» be two differentiable functions. In general, we cannot conclude that their Wron-
skian W (t) is not identically zero purely from their linear independency. However, if y; and o
are solutions to a second order homogeneous linear differential equation, then W (ty) # 0 for
some to € I provided y; and yy are linearly independent.

Theorem 4.1.12. Suppose y1 and yo are solutions to the second order homogeneous equation

Lyl =y +pt)y +q(t)y=0, fortel

where p(t) and q(t) are continuous on an open interval I. Then y1 and y2 are linearly independent
if and only if W(y1,y2)(to) # 0 for some tg € I.

Proof. The ‘if’ part follows by Theorem To prove the ‘only if” part, suppose W (y1, y2)(t) =
0 for any t € I. Take any ty € I, we have

Wy, ) (to) — ] i) o ‘ o,
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Then system of equations
{ ayi(to) + c2y2(to) = 0
a1y (to) + c2ys(to) = 07
has non-trivial solution for c¢1,co. Now the function c¢iy1 + coyeo is a solution to the initial value
problem
{ y' +pt)y +at)y =0, tel,
y(to) =0, y'(to) = 0.
This initial value problem has a solution y(t) = 0 which is unique by Theorem Thus
c1y1 + c2y2 is identically zero and therefore y, yo are linearly dependent. O

Theorem 4.1.13. Let y; and y2 be solutions to
Lyl =y"+pt)y +q(t)y =0, t €I

where p and q are continuous on an open interval I. Then W (y1,y2)(to) # 0 for some ty € 1
if and only if every solution of the equation is of the form y = c1y1 + coyo for some constants
C1,C2.

Proof. Suppose W (y1,y2)(to) # 0 for some to € I. Let y = y(t) be a solution of of Ly] = 0 and
write yo = y(to), yo = y'(to). Since W (ty) # 0, there exists constants c1, ¢y such that

( y1(to)  wa2(to) > ( ¢l ) _ < Yo )
y1(to) w5 (to) c2 v /)’
Now both y and cjy; 4+ coyo are solution to the initial problem
{ y' +pt)y +alt)y =, tel,
y(to) = vo, ¥'(to) = -
Therefore y = c1y1 + coy2 by the uniqueness part of Theorem [4.1.1

Suppose the general solution of Lly] = 0 is y = c1y1 + coy2. Take any ty € I. Let u; and ugy be
solutions of L[y] = 0 with initial values

ul(to) = 1 'UQ(t()) =
Lty = 0 ma i 2

The existence of u; and us is guaranteed by Theorem [4.1.1] Thus there exists constants
aii, a2, as1, ase such that

{ up = a1yl + a1y
uz2 = a1y + aey2
In particular, we have
{ 1 = wi(to) = anyi(to)+ a2y2(to)
0 = wua(to) = ai2yi(to) + azy(to)
and
{ 0 = wuji(to) = any(to) + axnys(to)
1 = uh(to) = arayi(to) + azayh(to)

In other words,
(o 1)= () ) (o i)
( y1(to) w2(to) )

2
vi(to)  wa(to)
is non-singular and its determinant W (y1,y2)(to) is non-zero. O

Therefore the matrix
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Combining Abel’s theorem (Theorem4.1.11]), Theorem4.1.12) Theorem [4.1.13[and the definition

of basis for vector space, we obtain the following theorem.

Theorem 4.1.14. The solution space of the second order homogeneous equation
Lyl =y" +pt)y +qt)y=0, fortel,

where p(t) and q(t) are continuous on open interval I, is of dimension two. Let y1 and yo be
two solutions to L[y] = 0. Then the following statements are equivalent.

1. W(y1,y2)(to) # 0 for some ty € I.
2. W(yr,y2)(t) #0 for allt € 1.

3. The functions y1 and yo form a fundamental set of solutions, i.e., y1 and yo are linearly
independent.

4. The functions y1, y2 span the solution space of Lly] = 0. In other words, the general
solution to the equation is y = c1y1 + C2y2.

5. The functions y1 and yo constitute a basis for the solution space of L[y] = 0. In other
words, every solution to L[y] = 0 can be expressed uniquely in the form y = c1y1 + caya,
where c1,co are constants.

Proof. The only thing we need to prove is that there exists solutions with W (y1,y2)(to) # 0
for some ty € I. Take any ty € I. By Theorem there exists solutions y; and ys to the
homogeneous equation L[y] = 0 with initial conditions

yi(to) = 1 { y2(to) 0
d
{ vilto) = 0 Lhlto) = 1
Then W (y1,y2)(to) = det(I) =1 # 0 and we are done. O

Exercise 4.1

1. Determine whether the following sets of functions are linearly dependent or independent.

= cos?z; g(z) = 1+ cos 2z

sinx cos x; g(x) = sin 2z
=l-z;9(x)=2—2% h(z) =22 -1

2. Find the Wronskian of the following pair of functions.

(a) €2t =3t (c) €%, te? (e) e'cost, etsint

(b) cost, sint (d) t, te! (f) 1 —cos2t, sin®¢
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3. If y; and y form a fundamental set of solutions of ty” +2y' +tely = 0 and if W (yy1,y2)(1) =

3, find the value of W (y1,y2)(5).

4. If y; and o form a fundamental set of solutions of t2y” — 2y’ + (3 + t)y = 0 and if

W(y1,y2)(2) = 3, find the value of W(y1,y2)(6).

5. Let y1(t) = t® and y2(t) = [t|3. Show that Wy, y2](t) = 0. Explain why y; and yo cannot
be two solutions to a homogeneous second order linear equation y” + p(t)y’ + q(t)y = 0.

6. Suppose f, g and h are differentiable functions. Show that W (fg, fh) = f2W(g,h).

4.2 Reduction of order

We have seen in the last section that to find the general solution of the homogeneous equation

Lyl =y"+pt)y +qt)y =0, t €1,

it suffices to find two linearly independent solutions. Suppose we know one non-zero solution
y1(t) to the equation L[y] = 0, how do we find a second solution y,(t) so that y; and yo are
linearly independent? We may use the so called reduction of order. We let

y(t) = y1(t)v().
where v(t) is a function to be determined. Then we have
{ y =yv' + i,
y" =" + 2910 + yv.
Substituting them into the equation L[y] = 0, we obtain
(y1v" + 210" + 9{v) + p(y1v’ + y10) + qrv
v+ (21 + py)v" + (w1 + oyt + qy)v

Since y; is a solution to L[y] = 0, the coefficient of v is zero, and so the equation becomes

y1v" + (21 +pyi)v' =0,

which is a first order linear equation of v'. We can get a second solution to L[y] = 0 by finding
a non-constant solution to this first order linear order. Then we can write down the general

solution to the equation L[y] = 0.
Example 4.2.1. Given that y1(t) = e~ is a solution to
'+ 4y + 4y =0,

find the general solution of the equation.

Solution: We set y = e~ ?!v, then

y/ — ef2t,U/ _ 2672)&’07
y// — G_Qtv” o 46_%1}/ _'_46—2750.

Thus the equation becomes

e 2" — 4e7?) 4 4e7 %y 4 4(e7 2 — 2e7%M0) + 47w

e—?t

Therefore the general solution is y = e =2 (cit + ¢2) = cite 2 + coe™ 2t

"
v

"
v
/
v
(%

&1

cit + ¢
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Example 4.2.2. Given that y1(t) = t~! is a solution of
2%y + 3ty —y =0, t >0,
find the general solution of the equation.
Solution: We set y =t~ 'v, then
{ Yy =t —t v,
Y =t —2t7 2 4 2t 3.
Thus the equation becomes

202t — 272 + 2t 730) + 3Lt — %) —t e =

200" —' =
t20" — Zt73 = 0
d, _1
—(t720) = 0
L )
Ly
t 20 = ¢
/ 1
v = ct2
v = c1t2 +co
Therefore the general solution is y = (clt% + )t = clt% + ot O

Exercise 4.2

1. Using the given solution y;(t) and the method of reduction of order to find the general
solution to the following second order linear equations.

(a) t2y" — 2y = 0; yi(t) = 12 (e) ty" —y +4t3y = 0; y1(t) = cos(t?)
(b) %" + 4ty +2y = 0; yi(t) =t ! (f) 2y + 3ty +y =0; () =t~
(c) t2 "ty +y=0;yi(t) =t (g) t2y" — 3ty + 4y = 0; y(t) = 12
(d) v =2y +y=0; y1(t) = ¢t (h) t2y" +ty' +y = 0; y1(t) = cos(In z)

4.3 Homogeneous equations with constant coefficients

We consider homogeneous equation with constant coefficients

al2 dy

where a, b, c are constants. The equation
ar? +br+c¢=0

is called the characteristic equation of the differential equation. Let 71,72 be the two (com-
plex) roots (can be equal) of the characteristic equation. The general solution of the equation
can be written in terms of r1,ry is given according in the following table.
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Discriminant Nature of roots General solution

b?> —4ac >0 | r1,ry are distinct and real y = c1e"t 4 cper??

b2 — 4ac =0 r1 = ro are equal y = c1e"t 4 cote™?

b —4dac < 0 ri,r2 = AE£ip (u>0) y = e (c1 cos(ut) + cosin(ut))

Example 4.3.1. Solve
y"' —y — 6y =0.

Solution: Solving the characteristic equation

P—r—6 =

r = 3,—2.

Thus the general solution is

Yy = cle3t + cze*%.

Example 4.3.2. Solve the initial value problem

{ y' — 4y +4y =0,
y(0) =3, ¥'(0) = 1.

Solution: The characteristic equation
2 _
r“—4r4+4=0
has a double root r1 = r9 = 2. Thus the general solution is

Y = cle2t + 02t62t.

Now
y = 2c1€% + o + 2cqte®
= (21 + 02)e2t + 202t62t
Thus
y(0) = c1=3 N g = 3
y(0) = 2c1+c=1 o = —5H
Therefore

y = 3e — 5te?t.

Example 4.3.3. Solve the initial value problem

{ Yy’ —6y +25y=0, tel
y(0) =3, y'(0) =1

Solution: The roots of the characteristic equation is
ry,ro = 3+ 4s.

Thus the general solution is
y = €3 (cy cos 4t + cysin 4t).
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Now
y = 3e®(cicosdt + casindt) + € (—dey sin 4t + des cos 4t)
= 63t((301 + 4cg) cos 4t + (3cg — 4eq) sin 4t)
Thus
y(0) = c1=3 - cg = 3
Yy (0) = 3c1+4cp=1 o = —2
Therefore

y = 3 (3 cos 4t — 2sin 4t).

g
Example 4.3.4. Solve
y" +9y=0.
Solution: The roots of the characteristic equation are £3:. Therefore the general solution is
Yy = c1 cos 3t + co sin 3.
O
One final point before we end this section. In the second case i.e. 11 = r9, the solution

y = te™! can be obtained by the method of order reduction explained in Section Suppose
the characteristic equation ar? 4+ br + ¢ = 0 has real and repeated roots r; = ry. Then yp = et
is a solution to the differential equation. To find the second solution, let y(¢) = v(t)e™!. Then

y/ = (v/ =+ rlv)e“t
y" = (V" + 2rv 4 riv)ent,

The equation reads

ay’ +by' +cy =
a(v” + 2r10" + riv)e™t + b(v' + riv)e™t 4 cve™
av” + (2ary + b0’ + (ar? 4 bry + c)v

"
v

o o o o

Note that rq is a double root of the characteristic equation, so we have CLT% +bry 4+ ¢ =0 and
2ar1 +b = 0. Hence v(t) = ¢1 + cot for some constants ¢1, ¢ and we obtain the general solution

y = (c1 + cat)e™t,
Exercise 4.3

1. Find the general solution of the following second order linear equations.

(a) y"+y —6y=0 (c) ¥y =3y +2y=0 (e) y"+4y +13y=0
(b) ¥"+9y=0 (d) y" —8y' +16y =0 () v" =2y +5y=0

2. Solve the following initial value problems.
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(a) ¥"+3y' +2y=0;y0)=1,4(0)=1  (c) vy +5y +6y=0;y(0)=2,9'(0) =3
(b) " +3y =0; y(0) =-2,%(0) =3 (d) 49" +4y +5y=0; y(0) =4, y/'(0) =1

3. Use the substitution © = Int to find the general solutions of the following Euler equations.

(a) t2y" + 2ty — 12y =0 (b) t2y" — 3ty +4y =0

4.4 Method of undetermined coefficients

To solve the nonhomogeneous equation
Lyl =ay" + by +cy=g(t), t I,

where a, b, ¢ are constants and ¢(t) is a continuous function, we may first find a (particular)
solution y, = y,(t). Then the general solution is

Y = Ye + Yp,

where
Ye = C1Y1 + C2Y2,

where y., which is called a complementary function, is any solution to the associated homoge-
neous equation Lly] = 0. This is because if y = y(t) is a solution to L[y] = g(¢), then y — y,
must be a solution to the associated homogeneous equation L[y] = 0.

When ¢(t) = a191(t) + a292(t) + - - - + argx(t) where a1, as,--- ,a are real numbers and each
gi(t) is of the form e® coswt, sinwt, e* coswt, e sinwt, a polynomial in ¢ or a product of a
polynomial and one of the above functions, then a particular solution y,(¢) is of the form which
is listed in the following table.

The particular solution of ay” + by’ + cy = g(¢)

g(t) yp(t)
P,(t) = anpt™ 4+ -+ + a1t + ag t5(Apt™ 4+ -+ -+ At + Ap)
P, (t)e tS(Apt™ + -+ + Ayt + Ap)e™

Pn(t)COSCUt, Pn(t) sin wit 15 < E:tnt +-..+A1t+A0)COS(A}t )

Bpt"™ + -+ Bt + By) sinwt

At 4+ ... L A A
Po(£)e coswt, Py (t)e sinwt tseat<< nt" - Avt + Ag) coswt >

+(Bntn + .-+ Bit+ Bo) sin wt

Notes: Here s = 0, 1,2 is the smallest nonnegative integer that will ensure that
no term in y,(t) is a solution to the associated homogeneous equation Ly] = 0.

The values of the constants Ag, A1, -+, Ap, By, Bi,- -+ , By, can be obtained by substituting y,(t)
to the equation L[y] = g(t).

Example 4.4.1. Find a particular solution to y" —y' + 2y = 4t2.
Solution: A particular solution is of the form y, = Aot? + At + Ag. To find Ag, A, Az, we have

yg = 2A2.
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Putting them into the equation, we have

vy~ Up 2y = A
24y — (249t + A1) + 2(Agt? + At + Ag) = 4t?
2A2t2 + (—2A2 + 2A1)t + (2A2 — A+ 2A0) — 42

By comparing the coefficients, we obtain

245 = 4 Ay = 2
—2A5 + 244 = 0 = A = 2
249 — A1 +249 = 0 Ay = -1

Hence a particular solution is y, = 2t2 42t — 1.

Example 4.4.2. Solve y" — 3y’ — 4y = 18¢%..

74

Solution: The roots of the characteristic equation 72 —3r —4 = 0 is » = 4, —1. So the comple-

mentary function is

Yo = cle4t + 026%.

Since 2 is not a root of 72 —3r—4 = 0, we let Yp = Ae®, where A is a constant to be determined.

Now
Yp = 2Ae?
yy = 4Ae*
By comparing coefficients of
yg — 3y1’; -4y, = 18¢%
(4A — 3(2A) —4A)e* = 18e*
—64e* = 18¢*
we get A = —3 and a particular solution is y, = —3e7 3. Therefore the general solution is

Y=ye+yp = cret +coe”t — 3¢,

Example 4.4.3. Find a particular solution of y" — 3y’ — 4y = 34sint.

Solution: Since +i are not roots of r2 — 3r — 4 = 0, we let
yp = Acost + Bsint.

Then
{ y, = Bcost — Asint

Yy, = —Acost — Bsint
By comparing the coefficients of
yg — Sy;, —4y, = 34sint
(—Acost — Bsint) — 3(Bcost — Asint) —4(Acost + Bsint) = 34sint
(—A—-3B —4A)cost+ (—B+3A—4B)sint = 34sint,

we have
—-A—-3B—-44 = 0 N A = 3
—B+3A—-4B = 34 B = -5

Hence a particular solution is y, = 3cost — 5sint.
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Example 4.4.4. Find a particular solution of y" — 3y’ — 4y = 52e! sin 2t.

Solution: Since 1+ 2i are not roots of r2 — 3r — 4 = 0, we let
yp = €'(Acos2t + Bsin2t).

Then
y, = €' ((A+2B)cos 2t 4 (B — 2A) sin 2t),
yy = €' ((—3A +4B) cos 2t + (—4A — 3B) sin 2t).

By comparing coefficients
yll)' — 3y1'J -4y, = 52¢ sin 2t

| ((-3A+4+4B) —3(A+2B) —4A)cos2t
“ | +((~4A - 3B) — 3(B — 2A4) — 4B)sin 2t
(—=10A —2B)cos2t + (2A — 10B)sin2t = 52sin2¢

= 52¢'sin 2t

we have (A, B) = (1, —5) and a particular solution is y, = e’(cos 2t — 5sin 2t).

Example 4.4.5. Find a particular solution of y" — 3y’ — 4y = 10e .

Solution: Since —1 is a (simple) root of the characteristic equation 72 — 3r — 4 = 0, we let
yp = Ate™".

Then
y, = (—At+ A)e™?
yy = (At —2A)e™".

Now we want

y;,’ — 3y;, +4y, = 10e~*
(At —2A) — 3(—At + A) — 4At)e™" = 10e*
—5Ae”" = 10e7".
Hence we take A = —2 and a particular solution is y, = —2te™*.

Example 4.4.6. Find a particular solution of y" — 3y’ — 4y = 10e~t + 34sint + 52¢’ sin 2t.

Solution: From the above three examples, a particular solution is

Yp = —2te” '+ 3cost — 5sint + e’ cos 2t — He’ sin 2t.

Example 4.4.7. Find a particular solution of y" + 4y = 4 cos 2t.

Solution: Since 4i are roots of the characteristic equation 12 + 4 = 0, we let
yp = At cos 2t + Bt sin 2t.

Then
{ Yy, = (2Bt + A) cos 2t + (—2At + B)sin 2t

y;,’ = (—4At+4B) cos 2t + (—4Bt — 4A) sin 2t.

By comparing coefficients of

Yy, +4yp, = 4cos2t
(—4At +4B) cos2t + (—4Bt — 4A) sin 2t + 4(Atcos 2t + Btsin2t) = 4cos2t
4B cos2t —4Asin2t = 4cos?2t,

we take A =0, B =1 and a particular solution is v, = ¢ cos 2t.
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Example 4.4.8. Solve y" + 2y’ +y = 6te?.

Solution: The characteristic equation 724+2r+1 = 0 has a double root —1. So the complementary
function is
Ye = cle_t + czte_t.

Since —1 is a double root of the characteristic equation, we let y, = t?(At+ B)e~t, where A and
B are constants to be determined. Now

y, = (—At* + (3A — B)t* + 2Bt)e™"
yp = (At? + (—6A + B)t* + (6A — 4B)t + 2B)e".

By comparing coefficients of

y;,/ + Qy;) +yp = 6te
(At3 + (—6A + B)t? + (6A — 4B)t + 2B)
+2(—At3 + (3A — B)t? + 2Bt) et = 6te’?

+(At3 + Bt?)
(6At +2B)e" = 6te’?,

we take A =1, B = 0 and a particular solution is y, = t3e~t. Therefore the general solution is

Y=Y+ Yp= cre '+ cote ™t + t3et.

Example 4.4.9. Determine the appropriate form for a particular solution of

y' +y — 2y = 3t — sin4t + 3t2e?.

Solution: The characteristic equation 72 4 r —2 = 0 has roots 7 = 2, —1. So the complementary

function is

Yo = cle% + Cze_t.

A particular solution takes the form

Yp = (Alt + Ao) + (Bl cos 4t + Bssin 4t) + t(02t2 + Cit + CQ)€2t.

O
Example 4.4.10. Determine the appropriate form for a particular solution of
y' + 2y + 5y = ted — tcost + 2te ' sin 2t.
Solution: The characteristic equation 72+2r+5 = 0 has roots r = —142i. So the complementary

function is
Yo = e "(c1 cos 2t + co8in 2t).

A particular solution takes the form
yp = (A1t + Ag)e® + (Bt + Ba) cost+ (Bst + By) sint +te” ' ((C1t + Cs) cos 2t + (Cst + Cy) sin 2t).
O

Exercise 4.4

1. Use the method of undetermined coefficients to find the general solution of the following
nonhomogeneous second order linear equations.
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(a) ¥ — 2y — 3y = 3e* (f) v/ =2y +y=te' +4

(b) ¥ + 2y’ + 5y = 3cos 2t (2) v +4y =t + 3¢t

(c) ¥ +9y =t?* 46 (h) y”+2y + 5y = 4e "t cos 2t
(d) v +y -2y =2t (i) v" — 3y — 4y = 62 + 2sint
(e) ¥ +2y +y=2e" (G) " + 4y + 4y = 8e® + 8¢~ 2

2. Write down a suitable form y,(t) of a particular solution of the following nonhomogeneous
second order linear equations.

(a) y" + 3y = 2t* + 273 4 sin 3¢

(b) 4" — 5y + 6y = e’ cos 2t + 3te? sint

(c) v"+y=1t(1+sint)

(d) o + 2y + 2y = e (2 — cost + 5t?sint)

(e) ¥ — 4y +4y = t(2 + €*' — 3cos 2t)

4.5 Variation of parameters

To solve a non-homogeneous equation L[y] = ¢(t), we may use another method called variation
of parameters. Suppose y(t) = c1y1(t)+cay2(t), where c1, co are constants, is the general solution
to the associated homogeneous equation L[y] = 0. The idea is to let the two parameters ¢y, co
vary and see whether we could choose suitable functions wuq(t),ua(t), which depend on g¢(t),
such that y = uy(t)y1(t) + ua(t)y2(t) is solution to Lly] = ¢(t). It turns out that this is always
possible.

Theorem 4.5.1. Let y; and ys be a fundamental set of solution of the homogeneous equation
Lyl =y" +pt)y +at)y =0, tel,

where p(t) and q(t) are continuous functions on I and

Y1 Y2
W =Wy, y2)(t) = 'y = Y195 — Y1 v2,

be the Wronskian. Let g = g(t) be any continuous function. Suppose ui and uz are differentiable
functions on I such that

v — 99
| =
.ol
=y
then y, = u1y1 + ugy2 is a solution to
Llyl=g, tel

Proof. Observe that u} and u), are solution to the system of equations
(i 5) ()= ()
nove )\ g

{U’ly1+U’zy2 = 0
iy Fuyy, = g

or equivalently
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Hence we have

Yp = Uiy + ubys + wryh + ugyh
= w1y + u2ys

and
Yp = Uiy +usys +uryy + ugyy
= g(t) +uyy +uays.
Therefore
Yy + )y, +a)ypy = g(t) +ury] +uays + p(t)(ury) + uayh) + q(t) (urys + uy2)
= g(t) +w (¥ +pO)yi + a)y) +u2(yz +p(t)yz + a(t)y2)
= g(t)
where the last equality follows from the fact that y; and ys are solution to L[y] = 0. O
Example 4.5.2.
3
y// + 4y =
sint

Solution: Solving the corresponding homogeneous equation, we let

y1 = cos 2t, yo = sin 2t.

We have
cos 2t sin 2t
Wy, 92)(t) = —2sin2t 2cos2t | 2.
SO 3 .
= —%J/Q _ (Sint)251n2t _ _3(2(;0§tst1nt) — _3cost,
3 2t _ osinlt)
o = J9 (5irz) c0s _3(1—2sin7t) 3 — 3sint
2 W 2 2sint 2sint .
Hence,

u] = —3sint + ¢,
uy = 31In|csct — cot t| + 3cost + ca.

and the general solution is

Yy = wiyr +uzy2
3
= (—3sint+ ¢1)cos 2t + (5 In|csct — cott| + 3cost + cp)sin 2t

3
= ¢y €082t + cosin2t — 3sint cos 2t + isin2tln\csct—cott] + 3 costsin 2t
3
= 10082t + cosin2t + §sin2tln|csct— cott| 4+ 3sint

where ¢, co are constants. O

Example 4.5.3.
3t

//_3/ 2 —
A
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Solution: Solving the corresponding homogeneous equation, we let

We have

t o2 o
W(yl,yg)( ) el 9e2t | T
So o3t o2t
o = 992 _ 26 /3t
1 %% et +1 et +1’
2T w et +1 et +1
Thus
“ / et + 1
/ ( 1 ) d(e' 4+ 1)
= log(e' +1)— (" + 1)+ c1
and

t
e
= ——dt
U2 /et+1

1
N /et+1d(et+1)

= log(e' + 1)+ ca.

Therefore the general solution is

Yy = wyr + u2y2
= (log(e' +1) — (e + 1) + c1)e’ + (log(e! + 1) + c2)e*
= cre' +cae® + (el + ) log(e! + 1)

Exercise 4.5

1. Use the method of variation of parameters to find the general solution of the following
nonhomogeneous second order linear equations.

(a) y" — 5y + 6y = 2¢ (e) y”+9y:9se(323t;0<t<%
b — 2y =2t t

(b) ¥ —y =2y 0 v -2 +y =10y

(c) y"+ 2y +y=4de?

(d) " +y=tant; 0<t < % (g) y”—3y’+2y:m

2. Use the method of variation of parameters to find the general solution of the following
nonhomogeneous second order linear equations. Two linearly independent solutions y; ()
and ys2(t) to the corresponding homogeneous equations are given.
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2y =2y =32 -1, t>0; y1(t) =t 1, yo(t) = 12

t2y" —t(t+2)y + (t+2)y = 23, £ > 0; y1 () = ¢, ya(t) = te'
-t +ty —y=20t—-1%e,0<t<1;y1(t) =t, yot) = €
t2y" = 3ty + 4y = t*Int, t > 0; y1(t) = %, yo(t) = ¢*Int

4.6 Mechanical and electrical vibrations

One of the reasons why second order linear equations with constant coefficients are worth study-
ing is that they serve as mathematical models of simple vibrations.

Mechanical vibrations

Consider a mass m hanging on the end of a vertical spring of original length I. Let u(t), mea-
sured positive downward, denote the displacement of the mass from its equilibrium position at
time t. Then u(t) is related to the forces acting on the mass through Newton’s law of motion

mu” (t) + ku(t) = (), (2.6.1)

where k is the spring constant and f(¢) is the net force (excluding gravity and force from the
spring) acting on the mass.
Undamped free vibrations
If there is no external force, then f(t) = 0 and equation (2.6.1) reduces to
mu” (t) + ku(t) = 0.

The general solution is
u = Cq coswyt + Cy sin wyt,

[k
wo = —
m

is the natural frequency of the system. The period of the vibration is given by

7= or ™
wo k

We can also write the solution in the form

where

u(t) = Acos(wot — ).
Then A is the amplitude of the vibration. Moreover, u satisfies the initial conditions
w(0) = up = Acosa and v/ (0) = uj = Awp sin .

Thus we have

u/? !
A:ug—k—% and a = tan~' —2—.
wq UowWo

Damped free vibrations
If we include the effect of damping, the differential equation governing the motion of mass is

mau” 4+ yu' 4+ ku =0,
where v is the damping coefficient. The roots of the corresponding characteristic equation are

—y + /72 —4km
2m '

ry,Tr2 =

The solution of the equation depends on the sign of v?> — 4km and are listed in the following
table.
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Solution of mu” 4+ yu' 4+ ku = 0

Case Solution Damping
7 3
om < 1| e 2m!(Cy cosut + Cysinpt) | Small damping
m
7 .y
e 1 (Cit + Cg)e_%t Critical damping
m
2
o >1 Cre™t 4 Coert Overdamped
m
Here
k 2 2
o LR
m  4m? 4km

is called the quasi frequency. As ~+2/4km increases from 0 to 1, the quasi frequency i decreases
from wp = \/k/m to 0 and the quasi period increases from 27+/m/k to infinity.
Electric circuits
Second order linear differential equation with constant coefficients can also be used to study
electric circuits. By Kirchhoff’s law of electric circuit, the total charge ) on the capacitor in a
simple series LCR circuit satisfies the differential equation
2
L& +R@ Q = E(t),
dt? a C
where L is the inductance, R is the resistance, C is the capacitance and E(t) is the impressed
voltage. Since the flow of current in the circuit is I = d@/dt, differentiating the equation with
respect to ¢ gets
LI" + RI' + C7'1 = E'(t).

Therefore the results for mechanical vibrations in the preceding paragraphs can be used to study
LCR circuit.

Forces vibrations with damping

Suppose that an external force Fjcoswt is applied to a damped (y > 0)) spring-mass system.
Then the equation of motion is

ma” +yu' + ku = Fy coswt.
The general solution of the equation must be of the form
u = cruq (t) + caua(t) + Acos(wt — a) = uc(t) + U(t).

Since m, 7, k are all positive, the real part of the roots of the characteristic equation are always
negative. Thus u. — 0 as t — oo and it is called the transient solution. The remaining
term U(t) is called the steady-state solution or the forced response. Straightforward, but
somewhat lengthy computations shows that

where

A= \/mg(wg —w?)?2+~2w? and wy = \k/m.
If 42 < 2mk, resonance occurs, i.e. the maximum amplitude
Fo

ywor/1 — 2 /4dmk

Amax =
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is obtained, when

72
w:wmaxzw% (1_2771]{;)

We list in the following table how the amplitude A and phase angle a of the steady-state
oscillation depends on the frequency w of the external force.

Amplitude and phase of forced vibration

Frequency Amplitude Phase angle
w—0 A— Lo a—0

&
1
&
N
VN
[
[N}
3\%
Eal
N———
)
€
(=)
>
Y=
(o)
~
=~
3
ol
o

Forced vibrations without damping
The equation of motion of an undamped forced oscillator is

mu” 4+ ku = Fy coswt.

The general solution of the equation is

. Fycoswt
u = ¢ coswot + cpsinwpl + ——5——+, W £ wo
m(wg — w?)
. Fyt sinwyt
U = 1 coswot + co sinwgt + ——, w = wy
2muwg

Suppose w # wy. If we assume that the mass is initially at rest so that the initial condition are
u(0) = u/(0) = 0, then the solution is

" (coswt f
u = ————(coswt — cosw
m(wd — w?) 0
2F0 . (wo — w)t . (WO + w)t
= 5 Sin sin :
m(w§ — w?) 2 2

If |wg — w] is small, then wy + w is much greater than |wp — w|. The motion is a rapid oscillation
with frequency (wp + w)/2 but with a slowly varying sinusoidal amplitude

2F,
mlw3 — w?|

(wo —w)t
2

sin

This type of motion is called a beat and |wy — w|/2 is the beat frequency.

4.7 Higher order linear equations

The theoretical structure and methods of solution developed in the preceding sections for second
order linear equations extend directly to linear equations of third and higher order. Consider
the nth order linear differential equation

Ly = y"™ 4+ pu1()y™ D + - £ p1(8)y + po(t)y = g(t), t €1,

where po(t), p1(t), -+, pn—1(t) are continuous functions on I. We may generalize the Wronskian
as follow.
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Definition 4.7.1 (Wronskian). Let yi,y2,- - -
the Wronskian to be the function

,Yn be differentiable functions.

y1(t) Y2 (t) Yn(t)
Y1 (1) Y5 (t) Yn (1)
W =W(t) = Yy (t) Yy () Yn (1)
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Then we define

We have the analogue of Theorem and Theorem [£.1.14] for higher order equation.

Theorem 4.7.2 (Abel’s Theorem). Suppose y1,y2,- - -

equation
dny n—ly

Then the Wronskian W (y1,ya, - -

dy

7t +po(t)y =0, on 1.

,Yn) satisfies

Wi am - un)(t) = coxp (— / pn_1<t>dt)

for some constant c.

Theorem 4.7.3. The solution space of the homogeneous equation
Lly) = 4™ +paa (g™ 4+ pr(0)y +po(t)y =0, t €1,

is of dimension n. Let y1,ys, -
equivalent.

1. W(to) # 0 for some tg € I.
2. W(t)#0 forallt €.

3. The functions yi,ya,- - -
linearly independent.

,Yn form a fundamental set of solutions, i.e., y1,ya,- - -

,Yn are solutions of the homogeneous

, Yn be solutions of L[y|] = 0, then the following statements are

,Yn are

4. Bvery solution of the equation is of the form ciyy + caya + - - - + cpyn for some constants

, Yn Span the solution space of Ly| = 0.

C1,C2,"* ,Cn, 7:'6': Y1, Y2,

5. The functions y1,y2, - -

Now we assume that the coefficients are constants and consider
Lyl =™ + an1y™ V4 4 ary +agy =0, t 1,

where ag, a1, -+ ,an_1 are constants. The equation

PPt e+ ar +ag =0,

is called the characteristic equation of the differential equation.
If X\ is a real root of the characteristic equation with multiplicity m, then

e)\t7 te)\t, . ’tm—le)\t

,Yn constitute a basis for the solution space of L[y] = 0.



Second and higher order linear equations 84

are solutions to the equation.
If +pi are purely imaginary roots of the characteristic equation with multiplicity m, then

m m

cos pt,tcosput, - ,t™ Lcosut, and sinpt,tsinpt,--- ™ L sin ut

are solutions to the equation.
If A &+ pi are complex roots of the characteristic equation with multiplicity m, then
e)\ . tm—lekt

tcos ut, te cos ut, - cos ut,

and
eMsin ut, teM sin pt, - - ™ LM sin pt
are solutions to the equation.

We list the solutions for differential nature of roots in the following table.

Solutions of L[y] =0

Root with multiplicity m Solutions

Real number A e teM .. pmTleM

. . . cos ut, tcos ut, - -, ™ cos put,

Purel b . . .
urely imaginary number pui sin pit, £sin pit, -+, £ sin it
At At m—1_A\t
. e cosut,te cosut, -+ ,t e’ cos ut,
1

Complex number A + i eMsin pt, te M sin pt, - - -t LeM sin pt

Note that by fundamental theorem of algebra, there are exactly n functions which are of the
above forms. It can be proved that the Wronskian of these function are not identically zero.

Thus these n functions constitute a fundamental set of solutions to the homogeneous equation
Lly] = 0.

Example 4.7.4. Find the general solution of

Yy 4y — Ty — oy + 6y = 0.

Solution: The roots of the characteristic equation
A =T —r4+6=0

are
r=-3-1,1,2.

Therefore the general solution is

y(t) = cre 3t 4 coeTt + gl + gt

Example 4.7.5. Solve the initial value problem

yW—y=0
{(meﬂ%y%me@DZ(l—LQ@‘
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Solution: The roots of the characteristic equation

are

Therefore the solution is of the form
y(t) = crel + coet + e5cost + ey sint.

The initial condition gives

1 1 1 0 ¢ 9
1 -1 0 1 o | [ -1
1 1 -1 0 P I
1 -1 0 -1 ca 3
We find that
c 1 1 1 0\ ‘/ 2
o | 1 -1 0 1 1
e | T 11 -1 0 0
4 1 -1 0 -1 3
11 1 1 9
11 -1 0 41 1
= 2 0 -2 0 0
0 2 0 -2 3
1
B 0
= 1
)

Therefore the solution to the initial value problem is y = e* + cost — 2sint.

Example 4.7.6. Find the general solution of
y @ +2y" +y=0.
Solution: The characteristic equation is
4+ 2r2+1=0

and its roots are
r=1,1,—1, —1.

Thus the general solution is

y(t) = c1 cost + casint + ctcost + eyt sint.

Example 4.7.7. Find the general solution of

yW+y=0.

85



Second and higher order linear equations 86

Solution: The characteristic equation is

rt+1=0
and its roots are
o= i g =0,1,2,3
= cos(zkzlw)—i— (2k 17r), k=0,1,2,3

Thus the general solution is

V2 Vi, . /2

_ V2 =2,
t+ cze 2 C087t+64€ 2 SIDTt'

S

v
y(t) = cleTZt

tan V2
2

2
CcoS 715 + coe2 "sin

O
Method of undetermined coefficients
The main difference in using the method of undetermined coefficients for higher order equations
stems from the fact that roots of the characteristic equation may have multiplicity greater than
2. Consequently, terms proposed for the nonhomogeneous part of the solution may need to
be multiplied by higher powers of ¢t to make them different from terms in the solution of the
corresponding homogeneous equation.

Example 4.7.8. Find the general solution of

y/// _ 3y// + 3y/ —y= 2et — et

Solution: The characteristic equation
P —3rt4+3r—1=0
has a triple root » = 1. So the general solution of the associated homogeneous equation is
ye(t) = cre’ + cote! + cst’el.
Since r = 1 is a root of multiplicity 3, a particular solution is of the form
yp(t) = t3(At + B)e' = (At* + Bt?)e'.
We have

yp = (At + (4A + B)t® + 3Bt?)e!
yn = (At* + (8A + B)t* + (12A 4 6B)t* + 6 Bt)e!
yn = (At* 4 (12A + B)t* + (36A + 9B)t> + (24A + 18B)t + 6B)e’

Substituting y,(t) into the equation, we have

"

Yp — 33/1/3, + Sy;, —Yp = ote! — e
24Ate! + 6Be! = 2tet — €.

(Note that the coefficients of thet, t3et, t2e! will automatically be zero since r = 1 is a triple root
of the characteristic equation.) Thus
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Therefore the general solution is
1 1
y(t) = cre! + cotel + czt?el — —t3e! + —tlel
6 12
Example 4.7.9. Find a particular solution of the equation

y(4) +2y" +y =4cost —sint.

Solution: The general solution of the associated homogeneous equation is
Ye(t) = c1cost + casint + cgt cost + ¢yt sint.
Since r = +¢ are double roots of the equation, a particular solution is of the form
yp(t) = t*(Acost + Bsint) = At cost + Bt?sint.

We have

y, = (Bt* + 2At) cost 4+ (—At* + 2Bt) sint

Yy = —At? + 4Bt + 2A) cost + (—Bt? — 4At + 2B) sint

y$) = (—Bt? — 6At + 6B) cost + (At®> — 6Bt — 6A) sint
) _

ys") = (At — 8Bt — 124) cost + (Bt2 + 8At — 12B) sint

—_

Substitute y, into the equation, we have

y£4)+2yg+yp = 4cost—sint
—8Acost —8Bsint = 4cost —sint.

(Note that the coefficients of 2 cost, t? sint, t cost, t sint will automatically be zero since r = +i
are double roots of the characteristic equation.) Thus

Aol gl
2 8

Therefore the general solution of the equation is

1 1
y(t) = ¢y cost + cosint + cstcost + eyt sint — 5252 cost + §t2 sint.

Example 4.7.10. Find a particular solution of
y" — 9y =t> + 3sint + 3.
Solution: The roots of the characteristic equation are » = 0,+3. A particular solution is of the

form
yp(t) = A1t® + Agt? + Ast + By cost + Bysint + Cte?,

Substituting into the equation, we have

6A4; — 9A3 — 18 Aot — 27 A1t> — 10By cost + 10By sint 4+ 18Ce3 = 2 + 3sint + €.

Thus 1 5 3 1
Al =——, Ay =0, As=——, Bj=—, Bb=0, C = —.
1 277 2 5 3 817 1 107 2 ) 18
A particular solution is
1 2 3 1
t) = ——t3 — =t + — cost + —te.
Ypt) = =57t — gt T g st ggte
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Example 4.7.11. Determine the appropriate form for a particular solution of
y" + 6y" + 12y + 8y = 4t — 3t2e 2! — tsin 3t.
Solution: The characteristic equation 73 4 672 + 127 + 8 = 0 has one triple root r = —2. So the

complementary function is
Yo = cre 2t + cote ™2t + cst?e 2.

A particular solution takes the form

yp = Art + Ag + t3(Bat® + Bt + By)e * + (Cit + Cs) cos 3t + (Cst + Cy) sin 3t.

Example 4.7.12. Determine the appropriate form for a particular solution of
y(4) + 4y + 4y = 5e' sin 2t — 2t cos 2t.
Solution: The characteristic equation r 4 472 + 4 = 0 has two double roots » = +2i. So the
complementary function is
Yo = (c1t + ¢2) cos 2t + (cat + c4) sin 2t).
A particular solution takes the form

yp = €'(Aq cos 2t + Ay sin 2t) + t*((Byt + Ba) cos 2t + (Bst + By) sin 2t).

O
Method of variation of parameters
Theorem 4.7.13. Suppose y1,y2, - ,Yn are solutions of the homogeneous linear differential
equation
dny dn—ly dy
Lly] = T +pn—1(t)W e +P1(75)E +po(t)y =0, on I.

Let W (t) be the Wronskian and Wi (t) be the determinant obtained from replacing the k-th column
of W(t) by the column (0,---,0,1)T. For any continuous function g(t) on I, the function

R CLAE
wit) = Sto) | E5pesas

s a particular solution to the non-homogeneous equation
Lly)(t) = g(?).

Outline of proof. Let
Yp(t) = viy1 + vay2 + -+ + VnYn.
To choose functions vy, vg, - -+ , v, so that y,(t) is a solution to
Lly] =g,

we want them satisfy

vyt + vy + -+ vy, =0
viyr o+ vy, o+ o A+ vy, = 0
v’lyinf? + véyénfj) + o 4 v&yfl”*j) -
v;y§” — véyé"_) + e+ vgyf@n_)

The result is obtained by solving the above system of equations. O
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Example 4.7.14. Find a particular solution of

y/// _ 2y// +y/ _ 2y — 5t.

Solution: The roots of the characteristic equation are r = 2, +i. A set of fundamental solutions
is given by

y o= e

Y9 cost

ys = sint

The Wronskian is

et cost sint

W(t) = |2 —sint cost | = 5e*
4e* —cost —sint

Using variation of parameter, let
yp(t) = vie? + vy cost + vzsint,

where v1, v9, v3 satisfy

vie?r  + whcost + vhsint = 0
wie?t — whsint + wvhcost = 0
4vie? — whcost — whsint = 5t
Solving this system we get
vy = te %
vh = t(2sint — cost)
vy = —t(2cost+sint)

Integrating the equations gives

_ _2t+1 -2t
v = 1 €
vy = —t(2cost+sint) —cost + 2sint
vs = t(cost—2sint) —2cost —sint
Therefore
2t+1
yp(t) = _72_ e e
+(—t(2cost +sint) — cost + 2sint) cost
+(t(cost — 2sint) — 2cost — sint)sint
)
= —2@2t+1
S+ )
is a particular solution. O

Example 4.7.15. Find a particular solution of

y" 4y =sec’t, te(—n/2,7/2).

Solution: The roots of the characteristic equation are r = 0, +i. A set of fundamental solutions
is given by

yo= 1

Y2 cost

ys = sint
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The Wronskian is
1 cost sint

W(t)=10 —sint cost |=1.
0 —cost —sint

Using variation of parameter, let
Yp(t) = v1 + vgcost + vzsint,

where v1, v9, v3 satisfy

v] + wvhcost + vhsint = 0
— vhsint + wvhcost = 0
— wheost — wvhsint = sec’t
Solving this system we get
vy = sec’t
vh, = —sect
vh = —secttant

Integrating the equations gives

v; = tant
vy = —lIn|sect+ tant| .
vy = —sect
Therefore
yp(t) = tant —costln|sect+ tant| —sectsint
= —costln|sect + tant]|
is a particular solution. O

Exercise 4.7

1. Write down a suitable form y,(t) of a particular solution of the following nonhomogeneous
second order linear equations.

(a) y® +y =1—2cost (e) ¥ 42y +y =tcost
(b) y3) — 2y 42y = t(1 — et cost)

£) y®) £ 243 L 9y = 92
(c) y(4)f2y”+y:t6t ) vy + 2y + 2y
(d) y® —5y" + 4y = e — te* (g) y® —y® = e —4t?

2. Use the method of variation of parameters to find a particular solution of the following
nonhomogeneous linear equations.

(a) y® —y =t (c) y® —2y" —y +2y ="
(b) y®) — 3y’ + 4y = * (d) y® +y =tanaz



5 Eigenvalues and eigenvectors

5.1 Eigenvalues and eigenvectors

Definition 5.1.1 (Eigenvalues and eigenvectors). Let A be an n xn matriz. A number \, which
can be a complexr number, is called an eigenvalue of the A if there exists a nonzero vector v,
which can be a complex vector, such that

Av = \v,

in which case the vector v is called an eigenvector of the matriz A associated with \.
5 —6
A= ( > ) |
2 5 —6 2 4 2
()= 2) (1) -(2)=2(1)

Thus A = 2 is an eigenvalue of A and (2,1)T is an eigenvector of A associated with the eigenvalue

e )- (1)

Thus A = 1 is an eigenvalue of A and (3,2)7 is an eigenvector of A associated with the eigenvalue
A=1.

Example 5.1.2. Consider

We have

Remarks:

1. An eigenvalue may be zero but an eigenvector is by definition a nonzero vector.

2. If v1 and vq are eigenvectors of A associated with eigenvalue A, then for any scalars ¢; and
ca, €1V1 + cove is also an eigenvector of A associated with eigenvalue A if it is non-zero.

3. If X\ is an eigenvalue of an n x n matrix A, then the set of all eigenvectors associated with
eigenvalue \ together with the zero vector 0 form a vector subspace of R™. It is called the
eigenspace of A associated with eigenvalue A.

Definition 5.1.3 (Characteristic polynomial). Let A be an n x n matriz. The polynomial
function
p(z) = det(zI — A)

of degree n is called the characteristic polynomial of A. The det(zI— A) = 0 is a polynomial
equation of degree n which is called the characteristic equation of A.

Theorem 5.1.4. Let A be an nxn matriz. The following statements for scalar A are equivalent.

1. X\ is an eigenvalue of A.

2. The equation (A\I — A)v = 0 has nontrivial solution for v.
3. Null(A\I — A) # {0}.

4. The matriz \I — A is singular.

5. X\ is a root of the characteristic equation det(zI — A) =0
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To find the eigenvalues of a square matrix A, we may solve the characteristic equation det(zI —
A) = 0. For each eigenvalue A\ of A, we may find an eigenvector of A associated with A by
finding a non-trivial solution to (\I — A)v = 0.

Example 5.1.5. Find the eigenvalues and associated eigenvectors of the matriz

(%)

Solution: Solving the characteristic equation, we have

det(\I—A) = 0

A—3 -2 _ 0
-3 A+2
MN-A—-12 = 0
A = 4,-3

For A\ =4,
4AI-A)yv =0

1 -2
<—3 6>V_0

Thus v = (2,1)7 is an eigenvector associated with A\; = 4.

For Ay = —3,
(=3I-A)v = 0
—6 -2
< 3 1 > v =0
Thus vo = (1,—3)7 is an eigenvector associated with Ay = —3. O

Example 5.1.6. Find the eigenvalues and associated eigenvectors of the matriz

A (9 8).

Solution: Solving the characteristic equation, we have

A -8
3] =
MN+16 = 0
A o= 44

For A\ = 4q,
(4I-A)yv = 0
41 —8
<2 4i >V =0

Thus vi = (2,4)7 is an eigenvector associated with A\; = 4i.
For )\2 = *42',

(-4iI-A)v = 0

—4i -8
( 2 —4z’>" =0
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Thus vo = (2, —i)7 is an eigenvector associated with Ay = —4i. (Note that Ay = A\; and vy = vy
in this example.) O

Remark: For any square matrix A with real entries, the characteristic polynomial of A has real
coefficients. Thus if A\ = p+ pi, where p, u € R, is a complex eigenvalue of A, then its conjugate
X = p — pi is also an eigenvalue of A. Furthermore, if v = a + bi is an eigenvector associated
with complex eigenvalue ), then v = a — bi is an eigenvector associated with eigenvalue \.

Example 5.1.7. Find the eigenvalues and a basis for each eigenspace of the matriz

2 -3 1
A= 1 -2 1
1 -3 2

Solution: Solving the characteristic equation, we have

A—2 3 -1
-1 X+2 -1 =0
-1 3 A—2
MA—1)2 = 0
A = 1,1,0
FOI‘)\lz)\QZL
-1 3 -1
-1 3 -1 |v =0
-1 3 -1

Thus {vi = (3,1,0)T,va = (=1,0,1)T} constitutes a basis for the eigenspace associated with
eigenvalue A = 1. For A3 =0,

-2 3 -1
-1 2 -1 v =0
-1 3 -2

Thus {v3 = (1,1,1)7} constitutes a basis for the eigenspace associated with eigenvalue A\ = 0.0J

In the above example, the characteristic equation of A has a root 1 of multiplicity two and a root
0 of multiplicity one. For eigenvalue A = 1, there associates two linearly independent eigenvectors
and for A = 0, there associates one linearly independent eigenvector. An important fact in linear
algebra is that in general, the number of linearly independent eigenvectors associated with an
eigenvalue A is always less than or equal to the multiplicity of A as a root of the characteristic
equation. A proof of this statement will be given in the next section. However the number of
linearly independent eigenvectors associated with an eigenvalue A\ can be strictly less than the
multiplicity of A as a root of the characteristic equation as shown by the following two examples.

Example 5.1.8. Find the eigenvalues and a basis for each eigenspace of the matriz

(32)
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Solution: Solving the characteristic equation, we have

0 A—2
(A-2? =
A= 2,2

0 -3
< 0 0 > v = 0
Thus {v = (1,0)T} constitutes a basis for the eigenspace associated with eigenvalue A = 2. In

this example, A = 2 is a root of multiplicity two of the characteristic equation but we call only
find one linearly independent eigenvector for A = 2. O

’A2 -3

When A\ = 2,

Example 5.1.9. Find the eigenvalues and a basis for each eigenspace of the matrizc

-1 1
A=| -4 3
1 0

N OO

Solution: Solving the characteristic equation, we have

A+1 0 —1 0
4 A—3 0 = 0
-1 0 A—2

A=2)A=1)?2 = 0

A= 21,1
For A\; = 2,
3 -1 0
4 -1 0 |Jv =0
-1 0 0

Thus {v; = (0,0,1)7} constitutes a basis for the eigenspace associated with eigenvalue \ = 2.
For )\2 = )\3 = 1,

2 -1 0
4 -2 0 |Jv = 0
1 0 1

Thus {vy = (—1,—2,1)T} constitutes a basis for the eigenspace associated with eigenvalue A = 1.
Note that here A = 1 is a double root but we can only find one linearly independent eigenvector
associated with A = 1. O

Exercise 5.1

1. Find the eigenvalues and a basis for each eigenspace of each of the following matrices.
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5 —6 4 -5 1 36 —2
) e(iya) e
(b)<160 :?) 11 1 1 00

#1021 (i) 1 20
(C)<—2 —1> 00 1 -3 5 2
> 2 -2 0 1 -3 5 =5

3 -1 @ 1 0 -1 M| 3 -1 3
(d)(1 1) o1 o T

2. Let A be a square matrix such that A2 = A. Show that if ) is an eigenvalue of A than
A=0or 1.

3. Let A be a square matrix.

(a) Show that if \ is an eigenvalue of A, then ) is also an eigenvalue of A7
(b) Show that A is non-singular if and only if 0 is not an eigenvalue of A.

(c) Show that if A is an eigenvalue of A, then for any non-negative integer k, A\* is an
eigenvalue of A*.

(d) Show that if A is non-singular and \ is an eigenvalue (which is non-zero by (2)) of
A, then \7! is an eigenvalue of A7,

4. Show that if A is an upper-triangular matrix, then A is an eigenvalue of A if and only if
A is equal to one of diagonal entries of A.

5.2 Diagonalization

Definition 5.2.1 (Similar matrices). Two n X n matrices A and B are said to be similar if
there exists an invertible (may be complex) matrix P such that

B =P 'AP.
Theorem 5.2.2. Similarity of square matrices is an equivalence relation, that is,

1. For any square matriz A, we have A is similar to A;
2. If A is similar to B, then B is similar to A;

3. If A is similar to B and B is similar to C, then A is similar to C.
Proof.

1. Since I is a non-singular matrix and A = I"'AI, we have A is similar to A.

2. If A is similar to B, then there exists non-singular matrix P such that B = P"'!AP. Now
P~! is a non-singular matrix and (P~1)~! = P. There exists non-singular matrix P~!
such that (P~1)"!BP~! = PBP~! = A. Therefore B is similar to A.

3. If A is similar to B and B is similar to C, then there exists non-singular matrices P and
Q such that B = P~'AP and C = Q 'BQ. Now PQ is a non-singular matrix and
(PQ)~! = Q7 'P~!. There exists non-singular matrix PQ such that (PQ) 'A(PQ) =
Q (P 'AP)Q = Q 'BQ = C. Therefore A is similar to C.
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Theorem 5.2.3.

AT

o RS

9.

The only matriz similar to the zero matrixz 0 is the zero matriz.

The only matriz similar to the identity matriz I is the identity matrix.

If A is similar to B, then aA is similar to aB for any real number a.

If A is similar to B, then AF is similar to B* for any non-negative integer k.
If A and B are similar non-singular matrices, then A~' is similar to B~1.
If A is similar to B, then AT is similar to BT.

If A is similar to B, then det(A) = det(B).

If A is similar to B, then tr(A) = tr(B) where tr(A) = a11 + a2 + - - - + any, s the trace,
i.e., the sum of the entries in the diagonal, of A.

If A is similar to B, then A and B have the same characteristic equation.

Proof.

1.

Suppose A is similar to 0, then there exists non-singular matrix P such that 0 = P~"1TAP.
Hence A = POP~! = 0.

Similar to (1) and is left as exercise.

. Exercise.

. If A is similar to B, then there exists non-singular matrix P such that B = P~!AP. We

have
k copies
B* = (P!AP)(P'AP)--- (P !AP)
= P 'APP HAP.---P 'A(PP HAP
= P7'AIAI.. . IAIAP
= P lAfP

Therefore A* is similar to B*.

. If A and B are similar non-singular matrices, then there exists non-singular matrix P such

that B = P~'AP. We have

B! = (P'AapP)!
_ PflAfl(Pfl)fl
= P AP

Therefore A~! is similar to B~1.

. Exercise.
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7. If A is similar to B, then there exists non-singular matrix P such that B = P~'AP. Thus
det(B) = det(P~!AP) = det(P~!) det(A) det(P) = det(A) since det(P~!) = det(P) L.

8. If A is similar to B, then there exists non-singular matrix P such that B = P~'AP.
Thus tr(B) = tr(P7'A)P) = tr(P(P7!A)) = tr(A). (Note: It is well-known that
tr(PQ) = tr(QP) for any square matrices P and Q. But in general, it is not always true
that tr(PQR) = tr(QPR).)

9. Similar to (7) and is left as exercise.
O

Definition 5.2.4. An nxn matriz A is said to be diagonalizable if there exists a non-singular
(may be complex) matriz P such that

P 'AP=D

1s a diagonal matriz. In this case we say that P diagonalizes A. In other words, A is diagonal-
izable if it is similar to a diagonal matrix.

Theorem 5.2.5. Let A be an n x n matriz. Then A is diagonalizable if and only if A has n
linearly independent eigenvectors.

Proof. Let P be an n x n matrix and write
P:[Vl vy e Vn].

where vi,va, -+, Vv, are the column vectors of P. First observe that P is non-singular if and
only if vq,ve, -+, v, are linearly independent (Theorem [3.3.13)). Furthermore

A
1)\2 O

P 'AP=D= ) is a diagonal matrix.

0 .
A1 N O
0 .

< AP = PD for some diagonal matrix D =

& A[vl vy e vn}:[)\lvl Aovy - )\nvn].

= [ Avy Avy -+ Av, ] = [ AV Aavy - ALVp ]

& vy is an eigenvector of A associated with eigenvalue A\ for k =1,2,--- ,n.
Therefore P diagonalizes A if and only if vi,vs,--- , v, are linearly independent eigenvectors
of A. O

Example 5.2.6. Diagonalize the matriz
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Solution: We have seen in Example that A has eigenvalues A; = 4 and Ay = —3 associated
with linearly independent eigenvectors vi = (2,1)7 and vo = (1, —3)” respectively. Thus the

(1)
eear = (20 (5 2)(0 )

matrix

diagonalizes A and

Example 5.2.7. Diagonalize the matriz

0 8
A= ( o ) .
Solution: We have seen in Example that A has eigenvalues \; = 4¢ and Ao = —4i associated

with linearly independent eigenvectors vi = (2,4)7 and vy = (2, —4)T respectively. Thus the
matrix

diagonalizes A and

Example 5.2.8. We have seen in Ezample that

2 3
A= (02)
has only one linearly independent eigenvector. Therefore it is not diagonalizable.

Example 5.2.9. Diagonalize the matriz

2 -3 1
A= 1 -2 1
1 -3 2

Solution: We have seen in Example that A has eigenvalues \y = Ay = 1 and A3 = 0. For
A1 = A2 = 1, there are two linearly independent eigenvectors vi = (3,1,0)” and vo = (—1,0,1)7.
For A3 = 0, there associated one linearly independent eigenvector vz = (1,1,1)7. The three
vectors vi, vo, vy are linearly independent eigenvectors. Thus the matrix

-1 1
P= 0 1
1 1

S = W
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diagonalizes A and

)

L

w

I
OO =
O = O
S O O

Example 5.2.10. Show that the matriz
1 1
= (a1)

Solution: One can show that there is at most one linearly independent eigenvector. Alternatively,
one can argue in the following way. The characteristic equation of A is (r —1)2 = 0. Thus A = 1
is the only eigenvalue of A. Hence if A is diagonalizable by P, then P~'AP = I. But then

1s not diagonalizable.

A = PIP~! =1 which leads to a contradiction. O
Theorem 5.2.11. Suppose that eigenvectors vi,va,--- , Ve are associated with the distinct
etgenvalues A1, Ao, -+ , A\ of a matrix A. Then vi,vo,--- , vy are linearly independent.

Proof. We prove the theorem by induction on k. The theorem is obviously true when k£ = 1.
Now assume that the theorem is true for any set of k£ — 1 eigenvectors. Suppose

c1vi +cove + -+ cpvi = 0.
Multiplying A — A\iI to the left on both sides, we have

Cl(A — )\kI)Vl + CQ(A - )\kI)VQ + -+ Ck;_l(A — )\kI)Vk—l + Ck(A - )\kI)Vk =0

ct( M = Ap)vi +ea(Ao = Ap)ve + -+ o1 Mp—1 — Ap)ve—r = O
Note that (A — A\gI)vi = 0 since vy, is an eigenvector associated with Ag. From the induction
hypothesis, vi,Vvo,---,vi_1 are linearly independent. Thus
Since A1, Ag, - -+, Ag are distinct, Ay — Ag, A — Ag, - -+, A\g—1 — Ar are all nonzero. Hence
61262:"':Ck_1:0.
It follows then that ¢ is also equal to zero because vy, is a nonzero vector. Therefore vy, vo, -, v
are linearly independent. O

The above theorem gives a sufficient condition for a matrix to be diagonalizable.
Theorem 5.2.12. If the n X n matriz A has n distinct eigenvalues, then it is diagonalizable.

Definition 5.2.13 (Algebraic and geometric multiplicity). Let A be a square matriz and A be
an eigenvalue of A, in other words, A is a root of the characteristic equation of A.

1. The algebraic multiplicity of A is the multiplicity of A being a root of the characteristic
equation of A. The algebraic multiplicity of A is denoted by mg(N).
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2. The geometric multiplicity of A is the dimension of the eigenspace associated to eigen-
value X, that is, the maximum number of linearly independent eigenvectors associated with
eigenvalue . The geometric multiplicity of X is denoted by mgy(X).

We have the following important theorem concerning the algebraic multiplicity and geometric
multiplicity of an eigenvalue.

Theorem 5.2.14. Let A be an n X n matrix and A be an eigenvalue of A. Then we have
1 < mg(A) < ma(A)

where mg(\) and mq(X) are the geometric and algebraic multiplicity of A respectively. In other
words, the mazimum number of linearly independent eigenvectors associated with A is less than
or equal to the algebraic multiplicity of A as a root of the characteristic equation of A.

Proof. Suppose there are k linearly independent eigenvectors vi,vo, -+, vy € R™ of A asso-
ciated with A\. We are going to prove that the algebraic multiplicity of A is at least k. Let
Ugy1, Ugyo, -, U, € R™ be vectors such that vi,va, -+ | Vi, Ugs1, Ugto, -+ , U, constitute a

basis for R”. Using these vectors as column vectors, the n x n matrix
P = [V17v27 o Vi, U1, Ug42, 0 0 7un]
is non-singular (Theorem [3.3.13)). Consider the matrix B = P~ AP which must be of the form
AL C
5= p)
where I is the k£ x k identity matrix, 0 is the (n — k) X k zero matrix, C is a k x (n — k) matrix

and D is an (n — k) x (n — k) matrix. Note that since A and B are similar, the characteristic
equation of A and B are the same (Theorem [5.2.3]). Observe that

(z—NI C

det(mI—B):’ o oD

’ = (z — N)¥ det(2I — D)
We see that the algebraic multiplicity of A as root of the characteristic equation of B is as least

k and therefore the algebraic multiplicity of A as root of the characteristic equation of A is as
least k. O

If the geometric multiplicity is equal to the algebraic multiplicity for each eigenvalue of A, then
A is diagonalizable.

Theorem 5.2.15. Let A be an n X n matrix and A1, Aa, -+ , A\ be the distinct roots of the
characteristic equation of A of multiplicity nq,no, - - - , ng respectively. In other words, the char-
acteristic polynomial of A s

($ — )\1)"1 (CL‘ — )\2)712 - (m _ )\k)nk

Then A is diagonalizable if and only if for each 1 < i < k, there exists n; linearly independent
etgenvectors associated with eigenvalue \;.

Proof. Suppose for each eigenvalue \;, there exists n; linearly independent eigenvectors associ-
ated with eigenvalue \;. Putting all these eigenvectors together, we obtain a set of n eigenvectors
of A. Using the same argument in the proof of Theorem [5.2.11} one may prove that these n
eigenvectors are linearly independent. Therefore A is diagonalizable (Theorem .
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Suppose A is diagonalizable. Then there exists n linearly independent eigenvectors vi, va, -+, vy
of A (Theorem . Among these vectors, at most n; of them are associated with \; for each
1 <4< k. Since ny +ns + --- +ni = n, we must have exactly n; of them associated with \;
for each i. Therefore there are n; linearly independent eigenvectors associated with A; for each

i.

O]

We conclude this section by giving three more theorems without proof.

Theorem 5.2.16. All eigenvalues of a symmetric matriz are real.

Theorem 5.2.17. Any symmetric matriz is diagonalizable (by orthogonal matriz).

Exercise 5.2

1.

10.

11.
12.

Diagonalize the following matrices.

(a) 1 3 0 -1 0 1 2 2
4 2 @lo o -1 ) | 21 2
3 9 6 11 6 2 21
o (57
3 =20 7 -8 3
(©) 5 —4 (e) 0 1 0 (g) 6 -7 3
2 -1 —4 4 1 2 -2 2
. Show that that following matrices are not diagonalizable.
(a) 3 1 -1 10 -3 3 =2
-1 1 (b) -4 3 0 (c) -7 6 -3
1 0 2 1 -1 2
. Let A and B be non-singular matrices. Prove that if A is similar to B, then A~! is similar
to B.

. Suppose A is similar to B and C is similar to D. Explain whether it is always true that

AC is similar to BD.

. Suppose A and B are similar matrices. Show that if A is an eigenvalue of A, then A is an

eigenvalue of B.

. Let A and B be two n x n matrices. Show that tr(AB) = tr(BA). (Note: In general, it

is not always true that tr(ABC) = tr(BAC).)

Let A = < CCL 2 > be a 2 x 2 matrix. Show that if (a — d)? + 4bc # 0, then A is
diagonalizable.
. Suppose P diagonalizes two matrices A and B simultaneously. Prove that AB = BA.

. A square matrix A is said to be nilpotent if there exists positive integer k such that

A* = 0. Prove that any non-zero nilpotent matrix is not diagonalizable.

Prove that if A is a non-singular matrix, then for any matrix B, we have AB is similar to
BA.

Show that there exists matrices A and B such that AB is not similar to BA.

Show that AB and BA have the same characteristic equation.
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5.3 Power of matrices
Let A be an n X n matrix and P be a matrix diagonalizes A, i.e.,
P 'AP=D

is a diagonal matrix. Then
A* = (PDP )" = PDFP 1,

A:<§_22>.

Example 5.3.1. Find A if

Solution: From Example [5.2.6]

where

Thus

- () ()Y
- (Y ) ()

[ 843 362
— \ 543 —62

O
Example 5.3.2. Find A if
4 -2 1
A= 2 0 1
2 -2 3
Solution: Diagonalizing A, we have
300
P'AP=D=| 0 2 0
0 0 2

where
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Thus
11 -1 3 00\°/1 1 -1\ "
A® = 11 0 0 2 0 11 0
10 2 00 2 10 2
11 -1 243 0 0 2 -2 1
- [11 o 0 32 0 2 3 -1
10 2 0 0 32 1 1 0
454 —429 211
= [ 422 —390 211

422 —422 243
g

Example 5.3.3. Consider a metropolitan area with a constant total population of 1 million
individuals. This area consists of a city and its suburbs, and we want to analyze the changing
urban and suburban populations. Let C) denote the city population and Sy the suburban popu-
lation after k years. Suppose that each year 15% of the people in the city move to the suburbs,
whereas 10% of the people in the suburbs move to the city. Then it follows that

Chin 0.85C}, + 0.15),
Spi1 = 0.15C) +0.95)

Find the urban and suburban populations after a long time.

Solution: Let x3, = (Cy, Sk)T be the population vector after k years. Then

xp = Axj_1 = A’ = - = APx,

0.85 0.1
A= < 0.15 0.9)'

Solving the characteristic equation, we have

where

A—085 —0.1 _ 0
—-015 X—09|
AN —1.72+075 = 0

A = 1,075

Hence the eigenvalues are Ay = 1 and Ay = 0.75. By solving A — AI = 0, the associated
eigenvectors are vi = (2,3)7 and vy = (—1,1)7 respectively. Thus

o (10
P AP_D_(O 0.75 )

where
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When k is very large

AF = pPDFP!

12
Q| =
7N
w N
— I
N~

Therefore

x; = AFxg
(04 06 ( C
B 0.4 0.6 So
0.4

- 0.4

N 0.6
That mean whatever the initial distribution of population is, the long-term distribution consists
of 40% in the city and 60% in the suburbs. O

An n x n matrix is called a stochastic matrix if it has nonnegative entries and the sum of the
elements in each column is one. A Markov process is a stochastic process having the property
that given the present state, future states are independent of the past states. A Markov process
can be described by a Morkov chain which consists of a sequence of vectors xi, k =0,1,2,---,
satisfying

Xp = Axp_1 = A’Xp_ 9= -+ = Akxo,

for some stochastic matrix A. The vector x; is called the state vector and A is called the
transition matrix.

The PageRank algorithm was developed by Larry Page and Sergey Brin and is used to rank
the web sites in the Google search engine. It is a probability distribution used to represent the
likelihood that a person randomly clicking links will arrive at any particular page. The linkage of
the web sites in the web can be represented by a linkage matrix A. The probability distribution
of a person to arrive the web sites are given by A*x, for a sufficiently large k and is independent
of the initial distribution xg.

Example 5.3.4 (PageRank). Consider a small web consisting of three pages P, Q and R, where
page P links to the pages Q and R, page Q links to page R and page R links to page P and Q.
Assume that a person has a probability of 0.5 to stay on each page and the probability of going
to other pages are evenly distributed to the pages which are linked to it. Find the page rank of

the three web pages.

*)Q

W<~—>=
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Solution: Let pg, qr and i be the number of people arrive the web pages P, () and R respectively

after k iteration. Then

05 0 0.25 Pt
= 025 05 0.25 Q1
0.25 05 0.5 o1

p

q
r

E S

Thus

X, = Axp_1 = - = AFxo,

where
05 0 0.25
A= 025 0.5 0.25
0.25 0.5 0.5

is the linkage matrix and
Po
X0 = 4o
To

is the initial state. Solving the characteristic equation of A, we have

A—0.5 0 -0.25
—-0.25 A—-05 —-0.25 =0
-025 —-05 AX-05

A3 — 1502 +0.5625\ — 0.0625 = 0
A=1)(A—-0.25?% = 0
A = 1lor0.25

For A\{ = 1, we solve
—0.5 0 0.25
025 —-05 025 |v=0
0.25 05 -0.5

and v; = (2,3,4)7 is an eigenvector of A associated with \; = 1.
For Ay = A3 = 0.25, we solve
025 0 0.25
0.25 025 025 |v=0
0.25 0.5 0.25

and there is only one linearly independent eigenvector vo = (1,0, —1)7 associated with 0.25.

Thus A is not diagonalizable. However we may take

2 1 4
P=|3 0 —4
4 -1 0
and
1 0 0
P'AP=J=1| 0 025 1
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(J is called the Jordan normal form of A.) When k is sufficiently large, we have

AF = pJip!

2 1 4 1 0 0 \'/2 1 a4\7!
- |3 0 -4 0 025 1 3 0 -4
4 —1 0 0 0 025 4 -1 0
29 1 4 10 0 1/9 1/9  1/9
~ |3 0 -4 00 0 4/9  4/9 —5/9
4 -1 0 00 0 1/12 —1/6 1/12
2/9 2/9 2/9
= [ 379 379 309
4/9 4/9 4/9

Thus after sufficiently many iteration, the number of people arrive the web pages are given by

2/9 2/9 2/9 Po 2/9
Afxo~ | 3/9 3/9 3/9 g9 | =(@o+q+mr0)| 3/9
4/9 4/9 4/9 7o 4/9

Note that the ratio does not depend on the initial state. The PageRank of the web pages P, Q
and R are 2/9, 3/9 and 4/9 respectively. O

Example 5.3.5 (Fibonacci sequence). The Fibonacci sequence is defined by the recurrence
relation

Fyro = Fyp1 + Fy, fork >0
Fo=0F =1.

Find the general term of the Fibonacci sequence.

Solution: The recurrence relation can be written as
Froo \ _ (11 Frt1
Fiia 10 F. )
(11 _( Fin
A—(1 O)andxk—< F, ),

Xpr1 = Axy, for k>0

X — Axk—l = A2Xk_2 == AkXO.

for k > 0. If we let

then

It follows that

To find A*, we diagonalize A and obtain

1+V6 1-v5 - 1 1 15  1-v/5 1+2\/5 0
2 2 2 2 =
1 1 ( 10 ) 1 1 0 155
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Hence
i 145 1-v5 <1+2‘/5>k 0 145 1-v5 \
S O 0 RS |G S
(A ) ()
() - (=) () - (9)
Now k+1 k+1
1 1+v5 _(1=+5
S A
we have

Note that we have

i Bt (A VB/2M = (1= VB)/2)5 145

e By ke (14V5)/2)F - (1= VB)/2)F 2

which links the Fibonacci sequence with the number 1+T\/5 ~ 1.61803 which is called the golden
ratio.

Exercise 5.3

1. Compute A5 where A is the given matrix.

(a)<g:2> (d)<1j> () 3_12(1)

_ 0 -2 2
(b)<2—2> 12 -1 4 -3 1
ot oliin) e(ne

2. Suppose A is a stochastic matrix, that is A is a square matric with non-negative entries
and the sum of entries in each column is one.
(a) Prove that A =1 is an eigenvalue of A.

(b) Prove that if all entries of A are positive, then the eigenspace associated with A = 1
is of dimension 1.

5.4 Cayley-Hamilton theorem

Let p(z) = anx™ +an_12" L+ -+ a1z +ap be a polynomial. We may consider p(z) as a matrix
valued function with square matrix input and write p(A) = a, A" +a, (A" 1+ + a1 A + ag
for square matrix A.
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Definition 5.4.1. Let A be an n X n matriz. The minimal polynomial of A is a nonzero
polynomial m(x) of minimum degree with leading coefficient 1 satisfying m(A) = 0.

One may ask whether there always exists a nonzero polynomial p(z) with p(A) = 0 for every
square matrix A. This is true because we have the Cayley-Hamilton theorem which is one of
the most notable theorems in linear algebra.

Theorem 5.4.2 (Cayley-Hamilton theorem). Let A be an n x n matriz and p(z) = det(zI— A)
be its characteristic polynomial. Then p(A) = 0. Moreover, we have m(x) divides p(z) where
m(x) is the minimal polynomial of A.

Proof. Let B=2zI — A and
p(z) = det(B) = 2™ + ap_ 12" + -+ a1z + ap

be the characteristic polynomial of A. Consider B as an n x n matrix whose entries are polyno-
mial in . Then the adjoint adj(B) of B is an n x n matrix with polynomials of degree at most
n — 1 as entries. We may also consider adj(B) as a polynomial of degree n — 1 in = with matrix
coefficients

adj(B) =B,,_12" ' +--- + Bz + By

where the coefficients B; are n X n constant matrices. On one hand, we have

det(B)YI = (2" +an_12" '+ +ajz+ag)l
= Iz"+ap1Iz" '+ + a Iz + al

On the other hand, we have

Badj(B) = (21— A)(B,_12" '+ -+ Bz + By)
= B, 12"+ (B, 2—AB, 1)2" ' 4+..- 4 (By— AB;)z — ABg
By Theorem we have
det(B)I = Badj(B)

By comparing the coefficients of the above equality, we get

I = Bn
an—ll = Bn—2_ABn—1

a11 = BQ—ABl
a(]I = —ABO

If we multiply the first equation by A™, the second by A”~!, and so on, and the last one by I,
and then add up the resulting equations, we obtain

p(A) = A"+ an 1 A"+ a A+ oapl
= A"B, 1+ (A"'B, 5~ A"B,_1) + -+ (ABy — A’B;) — ABy
= 0.

For the second statement, by division algorithm there exists polynomials ¢(x) and r(x) such
that

p(x) = g(z)m(z) + r(z)
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with r(x) = 0 or deg(r(z)) < deg(m(z)). Suppose r(x) is a non-zero polynomial. Let k be a non-
zero constant such that kr(x) has leading coefficient 1. Now kr(A) = kp(A) — kq(A)m(A) = 0.
This contradicts the minimality of m(z). Hence r(xz) = 0 which implies that m(z) divides

p(x). O

Let A be an n X n matrix and p(x) be the characteristic polynomial of A. Since the eigenvalues
of A are exactly the zeros of its characteristic polynomial (Theorem , we have p(z) =
(x — A1) (x — Ag)"™2 - -+ (& — \g)™ where A1, g, -+, A\, are the eigenvalues of A. The Cayley-
Hamilton theorem (Theorem gives us a way to find the minimal polynomial from the
characteristic polynomial.

Theorem 5.4.3. Let A be an n X n matriz and
p(x) = (. —A1)" (. = A)"™ - (@ — Ag)™

be the characteristic polynomial of A, where A1, Xo, -+ , A\ are distinct eigenvalues of A. Then
the minimal polynomial of A is of the form

m(z) = (z — A)"™ (@ — Ag)™2 - (2 — A)™
where 1 <my; < n; foranyi=1,2,--- k.

Proof. By Cayley-Hamilton theorem (Theorem [5.4.2)), the minimal polynomial m(z) divides the
characteristic polynomial p(z) and thus

m(x) = (@ = M) (@ = Ao)™ - (2 — Ag)™

where m; < n; forany ¢ = 1,2,--- , k. It remains to prove m; # 0 for any <. Now suppose m; = 0
for some 4. Since A; is an eigenvalue of A, there exists eigenvector v; such that Av; = \;v;.
Then

m(A) = 0
17”L(;A)VZ =0
(A — )\11)m1 s (A — )\iflI)mi_l(A — )\i+11)mi+1 s (A — )\]CI)mkVZ =0
(A= A0)™ (N = X)) (N = )™ (N = M) ™ = 0
which is a contradiction since Ay, Ao, - -+ , A\x are distinct and v; is nonzero. Therefore we proved
that m; > 1 for any i = 1,2,--- , k and the proof of the theorem is complete. O
Example 5.4.4. Let
2 -3 1
A=|1 -2 1
1 -3 2

Find the minimal polynomial of A.

Solution: The characteristic polynomial of A is
p(z) = z(x — 1)
Thus the minimal polynomial is either

z(z—1) or z(x—1)%
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By direct computation

2 -3 1 1 -3 1
AA-D)=|1 -2 1 1 -3 1 |=o0
1 -3 2 1 -3 1
Hence the minimal polynomial of A is m(z) = z(z — 1). O

Minimal polynomial can be used to characterize diagonalizable matrices.
Theorem 5.4.5. Let A be a square matriz and A1, Ao, - -+ , A\ be distinct eigenvalues of A. Let
m(x) = (z — A)"™ (x—X)"2 -+ (x — \g)™*

be the minimal polynomial of A. Then A is diagonlizable if and only if m; = 1 for any i =
1,2,--- k. In other words, a square matrix is diagonlizable if and only if its minimal polynomial
18 a product of distinct linear factors.

Proof. Suppose A is an n X n matrix which is diagonalizable. Then there exists (Theorem [5.2.5)
n linearly independent eigenvectors vi,va,---,v, of A in R". Now for each j =1,2,--- ,n, we
have Av; = \;v; for some 7 and hence

(A=MID) - (A= NI (A= \JI)v; =0

Since vi,va,- -, vy, are linearly independent, they constitute a basis (Theorem [3.4.7) for R"™.
Thus any vector in R” is a linear combination of vi,vy,--- , v, which implies that

(A - )\11)(A - )\QI) s (A - )\kI)V =0
for any v € R™. It follows that we must have
(A= MDA -XI)---(A=XI)=0

(Note that by Theorem we always have m; > 1 for each i.) Therefore the minimal
polynomial of A is
m(z) = (z — M)(x—A2) - (z — Ag)

On the other hand, suppose the minimal polynomial of A is
m(x) = (x—A)(x—A2) - (& — X\g)

Then
(A=XMDA-XI)---(A=XNI)=0

Foreachi = 1,2, - ,k, let n; = nullity(A—\;I) be the nullity of A—\,I and let {v;1,Vvia, -, Vin, }
be a basis for the eigenspace Null(A — \;I) of A associated with eigenvalue \;. Then using the
same argument in the proof of Theorem [5.2.11} we have

Vi1, s Ving, VoL, s Vang, s Vil > Vi,

are linearly independent vectors in R™. This implies that
nitneg+---+np<n

Moreover by Theorem [3.5.10, we have

n = nullity((A — )\11)(A — )\21) s (A — )\kI)) < ny+ng+ - +ng
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Combining the two inequalities, we have
n+ng+---+ng=n

Hence there exists n linearly independent eigenvectors of A. Therefore A is diagonalizable by

Theorem [5.2.5] ]
Example 5.4.6. Let
4 -2 1
A=|2 0 1
2 -2 3

Find the minimal polynomial of A. Then express A* and A~' as a polynomial in A of smallest
degree.

Solution: The characteristic polynomial is
p(x) = (x — 3)(z — 2)* = 2 — 72?4+ 162 — 12
The minimal polynomial of A is either

(x—3)(x—2) or (z—3)(z—2)*

Now
1 -2 1 2 -2 1
(A-30I)(A-2I) = 2 -3 1 2 -2 1 =0
2 -2 0 2 =2 1

Thus the minimal polynomial of A is m(z) = (z — 3)(z — 2) = 2% — 52 + 6. Now
m(A)=A? -5A +6I=0
Hence

A? = 5A —6I

A3 = B5A%-6A

5(5A — 6I) — 6A
19A — 301

A* = 19A%? —30A

19(5A — 6I) — 30A
= 65A — 1141

To find A~!, we have

A? _5A+4+6I = 0
A-5I+6A"" = 0

_1 1 5
A = _EA + EI
O
Example 5.4.7. Let
4 0 4
A= 0 2 -1
-1 0 0

Find the minimal polynomial of A. Then express A* and A" as a polynomial in A of smallest
degree.
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Solution: The characteristic polynomial is

The minimal polynomial of A is either
z—2 or (z—2)% or (z—2)3
Now

(A —21)% = #0

O = O
o O O
o N O

Thus the minimal polynomial of A is m(z) = (z — 2)% = 2% — 622 + 122 — 8. Now
m(A) =A% —6A% +12A —81=0
Hence

A% = 6A% - 12A +8I

A* = 6A%—12A% +8A
= 6(6A% —12A +8I) — 12A% + 8A
= 24A% — 64A + 481

To find A~!, we have
A3 —6A%2+12A —-8I = 0
A% —6A +121 —8A!
3 3

A7l = ZA?_CA+CI
PR

0|~

Exercise 5.4

1. Find the minimal polynomial of A where A is the matrix given below. Then express A*
and A~! as a polynomial in A of smallest degree.

5 —4 110 0 10
olia) o w(gan) e(an
3 -2 -
(b><2 —1> 3 1 1 11 -6 -2

2 5 @ 2 4 2 @ | 20 —11 —4
(C)<_1 0) -1 -1 1 : 0 0 1

2. Prove that similar matrices have the same minimal polynomial.

3. Let A be a square matrix such that A¥ = I for some positive integer k. Prove that A is
diagonalizable.

4. Prove that if A is a non-singular matrix such that A2 is diagonalizable, then A is diago-
nalizable.



6 Systems of first order linear equations

6.1 Basic properties of systems of first order linear equations

In this chapter, we study systems of first order linear equations

i = pu)rr + pe®)z + - + pwm)r. + a(t)
zh = pat)zr + pe)rs + -+ 4+ pawm®)z, + g2(t)
SC;L = pnl(t)xl + an(t)xZ + -+ pnn(t)xn + gn(t)
where p;j, gi(t), i,j = 1,2,--- ,n, are continuous functions. We can also write the system into

matrix form
x' =P(t)x+g(t), tel,

where
x1 p1i(t) pi2(t) -+ pa(t) g1(t)
| ™ P(1) — pa1(t) poa(t) -+ pan(t) a(t) = g2(t)
'y put® pua(®) -+ Punlt) gult)

An n-th order linear equaition can be transformed to a system of n first order linear equations.
Here is an example for second order equation.

Example 6.1.1. We can use the substitution x1(t) = y(t) and x2(t) = y'(t) to transform the
second order differential equation

v+ )y + qt)y = g(t),

to a system of linear equations

{ Ty =z
ry = —q(t)r1 — p(t)z2 + g(t)

A fundamental theorem for system of first order linear equations says that a solution always
exists and is unique for any given initial condition.

Theorem 6.1.2 (Existence and uniqueness theorem). If all the functions {p;;} and {g;} are
continuous on an open interval I, then for any ty € I and xg € R"™, there exists a unique solution
to the initial value problem

{ xX' =P(t)x+g(t), tel,
X(to) = Xp.

Definition 6.1.3. Let x(),x@ ... x(™ pe ¢ set of n solutions to the system x' = P(t)x and
let

be the nxn matriz valued function with column vectors xV, x@ ... x(™ . Then the Wronskian
of the set of n solutions is defined as

WixW x@ ..o xM)() = det(X(t)).
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The solutions x1),x®) ... x(™ are linearly independent at a point ¢ty € I if and only if
WxM, x@ ..o xM] () £ 0. If WxM,x@ ... xM](t5) # 0 for some ty € I, then we say
that x(V,x® ... x™ form a fundamental set of solutions.

Theorem 6.1.4 (Abel’s theorem for system of differential equation). Let x(M(¢), x®)(¢),--- ,x("(¢)
be solutions to the system

and
W(t) = W[X(l),X(Q), ... ,x(")](t)

be the Wronskian. Then W (t) satisfies the first order linear equation
W(t) = tr(P) ()W (t)

for some constant c where tr(P)(t) = p11(t)+paa(t)+- - +pnn(t) is the trace of P(t). Furthermore
W (t) is either identically zero on I or else never zero on I.

Proof. Differentiating the Wronskian W (¢) = W[x("),x(® ... x(](t) with respect to t, we have

d
I = D x@) ... x(0)
w g det [x x X }
— > det {Xm x® ... Ly ...Xuﬂ
i=1 dt

- idet {Xu) <@ ... px® ...Xw)}
=1

= tr(P)W

Here we have used the identity that for any vectors xi1,X2, - ,x, € R® and any n X n matrix
A, we have

Zdet [x1 x2 -+ Ax; -+ Xp] = tr(A)det [x1 X2 - Xy
i=1
By solving the above first order linear equation for W (t), we have

W(t) = cexp < / tr(P)(t)dt)

for some constant c. Now W (t) is identically equal to 0 if ¢ is zero and W (t) is never zero when
¢ is non-zero. t

The above theorem implies that if x(!),x® ... x(™ form a fundamental set of solutions, i.e.
WxM, x® ... xM](tg) # 0 for some ty € I, then W[x(1), x2) ... x(M](#) £ 0 for any t € I
and consequently x(1), x(?) ... ,x(")](t) are linearly independent for any ¢t € I.

Theorem 6.1.5. Suppose x1),x2 ... x(" form a fundamental set of solutions to the system
x' =P(t)x, tel.
Then each solution x to the system can be expressed as a linear combination
x = c1x +eox@ 44, x(™

for constants cq,ca,- -+ , ¢, in exactly one way.
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Proof. Take an arbitrary ¢ty € I. Since xM x@ ... x( form a fundamental set of solutions,
we have xU)(tg), x® (to),--- ,x(M(ty) are linearly independent. Thus there exists uniqueness
real numbers cq, co, - - , ¢, such that

x(to) = c1ixP(tg) 4+ cax@ (tg) + - - - + cnx™ (to)
Now the vector valued function

is also a solution to the system and its value at ¢y is the zero vector 0. By uniqueness of solution
(Theorem , this vector valued functions is identically equal to zero vector. Therefore
x = ;x4 e9x@ 4. - ¢, x(™ . This expression is unique because ¢1, ¢a, - - - , ¢, are unique. L[]

Exercise 6.1

1. Let P(¢) be a continuous matrix function on an interval I and x x@ ... x() pe solu-

tions to the homogeneous system

xX' =P(t)x, tel.

Suppose there exists tg € I such that x™M)(¢), x® (tg), - ,x™(ty) are linearly indepen-
dent. Show that for any ¢ € I, the vectors x(1 (), x®)(t),--- ,x(™(t) are linearly indepen-
dent in R™.

2. Suppose xO(t) = (z1(t), z2(t), - - , 2, (t))T is a solution to the homogeneous system

x =P(t)x, tel.
Suppose x(©)(tg) = 0 for some o € I. Show that x(0)(t) = 0 for any ¢ € I.
3. Let x(M(t),x®)(t),---,x™(t) be differentiable vector valued functions and
X(t)=[x® x@ ... x(0)7]
be the matrix valued function with column vectors x(), x(?) ... x(™ Show that

d " d ..
el — M x@ ... 240 . x0)
g det(X(2)) 2221 det [x x s x

4. Prove that for any vectors x1,X2, - ,X, € R” and any n X n matrix A, we have

Zdet [x1 x2 -+ Ax; ---xp] = tr(A) det [x1 x2 -+ Xy
i—1

6.2 Homogeneous linear systems with constant coefficients

From now on we will consider homogeneous linear systems with constant coefficients

where A is a constant n X n matrix. Suppose the system has a solution of the form

X = e)‘té,
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where £ is a non-zero constant vector. Then
x' = AeMe.

Put it into the system, we have

(AL — A)¢ =0.

Since £ # 0, A is an eigenvalue of A and £ is an eigenvector associated with \. Conversely if A
is an eigenvalue of A and ¢ is an eigenvector associated with ), then x = eM¢ gives a solution

to the system.
x' = t X
41 '

Solution: Solving the characteristic equation

Example 6.2.1. Solve

A—1 -1
T
A=1)2%2-4 = 0
A—1 = +£2
A= 3,-1
we find that the eigenvalues of the coefficient matrix are Ay = 3 and Ao = —1 and the associated

eigenvectors are

1 1
o-(1). - 4)

respectively. Therefore the general solution is

1 _ 1
X20163t<2>+026 t<_2).

O
Example 6.2.2. Solve
x = -3 V2 X
=l .
Solution: Solving the characteristic equation
A3 V2
V2 A2 |
A+3)(A+2)—2 = 0
M 45044 = 42
A= —4,-1
we find that the eigenvalues of the coefficient matrix are Ay = —4 and Ao = —1 and the associated

eigenvectors are

o=(F). (1)

respectively. Therefore the general solution is

x:cle4t< _1/§>+026t( \}§>
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O
When the characteristic equation has repeated root, the above method can still be used if
there are n linearly independent eigenvectors, in other words when the coefficient matrix A is
diagonalizable.

Example 6.2.3. Solve

»

Il
)
—_ O
O ==

»

Solution: Solving the characteristic equation, we find that the eigenvalues of the coefficient
matrix are Ay = 2 and Ay = A3 = —1.
For A1 = 2, the associated eigenvector is

1
5(1) — 1
1
For the repeated root Ao = A3 = —1, there are two linearly independent eigenvectors
1 0
5(2) — 0 7 5(3) — 1
-1 -1
Therefore the general solution is
1 1 0
X = 0162t 1 + 9t 0 + 03e_t 1
1 -1 -1

O
If A\=a+pBi, a—pFi, 5> 0 are complex eigenvalues of A and a+ bi, a— bi are the associated
eigenvectors respectively, then the real part and imaginary part of

€(a+6i)t(a +bi) = e*(cosBt+ isinft)(a+ bi)
= e™(acos Bt — bsin t) + e* (b cos 3t + asin Bt)i

give two linearly independent solutions to the system. We have

Theorem 6.2.4. Suppose A = a + Bi, a — Bi, 8 > 0 are complex eigenvalues of A and
a+ bi, a— bi are the associated eigenvectors respectively, then

x(1) = e (acos ft — bsin ft),
x() = e (b cos Bt + asin At),

are two linear independent solutions to x' = Ax.

x' = —3 2 x
- 4 1

Example 6.2.5. Solve
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Solution: Solving the characteristic equation

4 -1

A+3)A—1)+8 = 0
MA4204+5 = 0
A+1D*4+4 = 0

A

A= —1£2i
For A\ = —1 + 21,
—2+42 -2
A_A11_< 4 2—2i>

An associated eigenvector is

Moreover an eigenvector associated with Ao = —1 — 27 is

o= () =(00)-(0)

-1 0 —cos 2t
(1) _ —t _ . _ ot
x ¢ [< 1 ) cos 2t ( 1 ) Sl 2t] € ( cos 2t — sin 2t )
0 -1 — sin 2¢
2) _ —t . ot
X € [( 1 )COS% < 1 )Sm%] € ( cos 2t + sin 2t )

are two linearly independent solutions and the general solution is

Therefore

X = et —cos 2t 4 epet —sin2t¢
- A cos 2t — sin 2t 2 cos 2t + sin 2t
_ et —c1 cos 2t — ¢ sin 2t
N (c1+ c2)cos2t + (c2 —c1)sin2t ) °

0

Example 6.2.6. Two masses m1 and mo are attached to each other and to outside walls by
three springs with spring constants ki, ks and ks in the straight-line horizontal fashion. Suppose
that my =2, me = 9/4, k1 = 1, ke = 3 and k3 = 15/4 Find the displacement of the masses x1
and xg after time t with the initial conditions x1(0) = 6, z}(0) = —6, x2(0) =4 and 24(0) = 8.

Solution: The equation of motion of the system is

mlx’l’ = —(k‘1 + k‘z)xl + koxa,
moxl = koxy — (k1 + k3)zo.

Let y1 = 1, yo = 2, y3 = :c’l and y4 = a;’2 Then the equation is transformed to

0 0 10

, o 0 01|

Y= 22 3/2 0 0 |YTAY
4/3 =3 0 0
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The characteristic equation is

-2 0 1 0
0 —-Xx 0 1 — 0
-2 3/2 =X 0 N
4/3 -3 0 =\
0 0 1 0
0 0 0 1 — 0
—A2 -2 3/2 -2 0 N
4/3 =X2-3 0 -\
M +2)(\+3)-2 = 0
M43 +4 = 0
M +1)(N+4) = 0
The four eigenvalues are A\ = i, Ao = —i, A3 = 2¢ and Ay = —2i. The associated eigenvectors
are
3 3 3 3
W_| 2 @_] 2 6| 4 @_| 4
¢ 3 |’ ¢ =3i |’ ¢ 67 > & —61
2i —2i —8i 8i
From real and imaginary parts of
3
eMte) 321 (cost+isint)
2
Jcost 3sint
_ 2cost 2sint ;
- —3sint 3cost
—2sint 2cost
and
3
3t _62 (cos 2t + isin 2t)
—8i
3cos 2t 3sin 2t
- —4 cos 2t —4sin 2t
N —6sin 2t 6 cos 2t
8sin 2t —8cos 2t
the general solution to the system is
3cost 3sint 3cos 2t
_ 2cost 2sint n —4 cos 2t
Y= _3sint 21 3cost %1 _6sin2t
—2sint 2cost 8sin 2t
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From the initial conditions, we have

3 0 3 0 cl 6
2 0 —4 0 c _ 4
0 3 O 6 cs3 - —6
0 2 0 -8 C4 8
C1
Co _ 0
C3 - 0
C4 -1
Therefore
r1 = 6cost— 3sin2t
{ Ty = 4cost+ 4sin2t.

Exercise 6.2

1. Find the general solutions to the following systems of differential equations.

(a) Ty = x1 + 229 o) =4x1 + x2 + 23

ah = 2x1 + T2 (f) { xh =z +4as + a3
r_

(b) r) = 2x1 + 322 T3 = x1 + T2 + 43
x’2:2x1+x2 3:’1:23:1+x2—x3
x’l =21 — DTy () 30/2 = —4w1 — 3w2 — 73

(C) / — 4 + 4 + 2 K
Ty =21 — T2 Ty = 21 €2 €3

(@ xy = 5z — 9x9 x) =221 4 229 + 23
213/2 = 2x] — X9 (h) l'/2 =121+ 329 + T3
) =4z + x9 + 4a3 vy = 21 + 209 + 213

(e) S ah=z1 + Two+ 23

xh = 41 + 22 + 43

2. Solve the following initial value problem.

2} = 3x1 + 4xg ) =x1 — 229
(a) § oh = 3w + 229 (c) S ah =2x1 + 29
.1’1(0) = xQ(O) =1 :El(O) = 0, .TQ(O) =4

(x’l = 3x1 + 23
x) = 921 + bxo xh =91 — 29 + 213
(b) ¢z, = —6x1 — 229 xh = —9x1 + 4wy — 23

21(0) =1, 22(0) =0 x1(0) = 22(0) =0, z3(0) = 17

3. Solve x’ = Ax for the given matrix A.



Systems of first order linear equations 121

12 2 -3 3
(a)A:(?) 0) ) A= 4 -5 3
4 -4 2

4 -1 -1

1 -1 @A=[1 2 -1
ma-(3 ) L

6.3 Repeated eigenvalues

Consider the system

x = Ax, WhelreA:<1 -1 )

The characteristic equation of A is

A—1 1
TR I
AN 4 +4 = 0
A=-2)? =

It has a root A = 2 of multiplicity m, = 2. However, the set of all eigenvectors associated with
A = 2 is spanned by one vector
1
(1)

In other words, the geometric multiplicity A = 2 is m; = 1. So the geometric multiplicity is
smaller than the algebraic multiplicity. We know that

€2t

is a solution to the system. However we do not have sufficient number of linearly independent
eigenvectors to write down two linearly independent solutions to the system. How do we find
another solution to form a fundamental set of solutions?

Based on the procedure used for higher order linear equations, it may be natural to attempt to
find a second solution of the form
x = te?¢.
Substituting this into the equation reads
d

tete = Ate¥

ote?te + e = te®A¢
ele = te®(A —20)¢
e =0
which has no non-zero solution for eigenvector £&. To overcome this problem, we try another

substitution
x = te?'¢ + e,

where 7 is a vector to be determined. Then the equation x’ = Ax reads
2”E + (E+2n) = A(te*E + ')
el = (A -20)y
£ = (A-2D)y
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Therefore if we take 1 such that ¢ = (A —2I)n is an eigenvector, then x = te?'¢ +e%'n is another
solution to the system. Note that 7 satisfies

(A — D)y #0
{ (A= AD)’n=0

A vector satisfying these two equations is called a generalized eigenvector of rank 2 associ-
ated with eigenvalue \. Back to our example, if we take

= (5)

-1 -1 1 -1
, [ -1 -1 -1

So 7 is a generalized eigenvector of rank 2. Then

Then

Il
o

X(2) — t€2t§+€2tn — t€2t(A . 21)77+62t’)7 — te?t < -1 ) +€2t < 1 )

is a solution to the system and the general solution is

X = clx(1)+02x(2)

1 —1 1
_ 2 2 2t
= c1€ <_1>—|—Cg<t6 < 1 >—|—e <0>>
2t<01+02—02t>
= e .
—c1 + cot

In the above example, we see how generalized eigenvectors can to used to write down more
solutions when the coefficient matrix of the system is not diagonalizable.

Definition 6.3.1 (Generalized eigenvector). Let A be a square matriz, A be an eigenvalue of A
and k be a positive integer. A non-zero vector n is called a generalized eigenvector of rank
k associated with eigenvalue X\ if

(A - )\I)kiln # Oa
{ (A - \D)Fn =o0.

Note that a vector is a generalized eigenvector of rank 1 if and only if it is an ordinary eigen-
vector.

Theorem 6.3.2. Let A be a square matrix and n be a generalized eigenvector of rank k associated

with eigenvalue \. Let
.

o= 1,
m = (A=A,

2 = (A - AI)2777

Nk—-1 = (A - >‘I)k_1777
m = (A=A =o0.

Then
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1. For 0 < i <k —1, we have 1; is a generalized eigenvector of rank k — i associated with
etgenvalue .

2. The vectors n,m1,M2, - ,Nk—1 are linearly independent.

Proof. It is easy to see that 1; = (A — \I)'n satisfies

{ (A = AD* "y = (A = AD)* 'y =1 #0,
(A =AD" = (A= AD)fp=mn =0

and the first statement follows. We prove the second statement by induction on k. The theorem
is obvious when & = 1 since 7 is non-zero. Assume that the theorem is true for rank of 7
small than k. Suppose 7 is a generalized eigenvector of rank k associated with eigenvalue A and
co,C1,"+ ,Cr_1 are scalars such that

con+cm + -+ ck—2nk—2 + Cp—1Mk—1 = 0.
Multiplying both sides from the left by A — AL, we have
com +cime + -+ cg_2mp—1 = 0.

Here we used nx, = (A — AI)ng—1 = 0. Now 7 is a generalized eigenvector of rank k£ — 1 by the
first statement. Thus by induction hypothesis, we have n1,n2,- -+ , 1 are linearly independent
and hence

Co = C1 :'--:Ck_gzo.
Combining the first equality gives cx_1mr—1 = 0 which implies ¢x_1 = 0 since 7;_1 is non-zero.

We conclude that n,n1,n2, - ,nx_1 are linearly independent. O

A generalized eigenvector of rank k£ can be used to write down k linearly independent eigenvectors
for the system.

Theorem 6.3.3. Suppose A is an eigenvalue of a n X n matrix A and n is a generalized eigen-
vector of rank k associated with \. For1=20,1,2,---  k — 1, define

n = (A — AI)'p
Then
x) = e”nk_1
x? = eM(ngp_a+tnp_1) )
t
x®) = eM(nu_s + tnp_o + 5%_1)
® R 2 k=2 k1
= t t - S I S
x e™(n+ 2+ +(k_2)!77k 2+<k_1)!77k 1)

are linearly independent solutions to the system
x' = Ax.

Proof. 1t is left for the reader to check that the solutions are linearly independent. It suffices to
prove that x(*) is a solution to the system. Observe that for any 0 <i < k — 1,

Am = )\771' + (A — )\I)m
= An; +niq1.
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Thus
dx(¥)
dt
- i eAt( 4t _|_ﬁ +...+L )
)\t2 tk72 )\tkfl
At
= A 14+ At t+ — -
e <n+( H A (E+ )02 + +((k_2)!+(k_1)!)77k 1)
Ny 2 k=2 th—1
= ¢ i _ _ B Ve
e <(>\77+771)+ (A1 +m2) + o (Anz +m3) + - + (k_2)!(>\77k 2+ Nk—1) + (k_l)!)\nk 1)
Ny 42 th—2 th—1
= A A —A v ————Anp_o + ——— A
e < N tAmN 4 S A+ +(k_2)! Mk 2+(k_1)! Mk 1>
\ 2 th—2 th—1
= AeM <77+t771 +§772+"'+ Mnk—2+wnk_1>

= Ax®

Example 6.3.4. Solve
x' = L3 X
S \3 7

Solution: The characteristic equation of the coefficient matrix A is

A—1 3
5] =

(A—4)? = 0.

We find that A = 4 is double root and the eigenspace associated with A\ = 4 is of dimension 1
and is spanned by (1, —1)7. Thus
1 _ a1
XV = ¢ ( ! )

is a solution. To find another solution which is not a multiple of x(!), we need to find a generalized
eigenvector of rank 2. First we calculate

-3 -3
A (0.

Now we if take

then 7 satisfies
-3
m = (A -4y = ( 3 ) # 0,
no = (A — 41)*n = 0.
Thus 7 is a generalized eigenvector of rank 2. Hence

x?) = M+ in)

() ()
()



Systems of first order linear equations 125

is another solution to the system. Therefore the general solution is

1 1—-3t
X = cle4t(_1>+0264t< 3¢ >

_ MO + co — 3cat
—c1 + 3eat

x' = 71X
S\ -4 3 )

Solution: The characteristic equation of the coefficient matrix A is

Example 6.3.5. Solve

‘)\—7 -1 — 0

4 A-3
(A=5)2 = 0.

We find that A = 5 is double root and the eigenspace associated with A = 5 is of dimension 1
and is spanned by (1, —2)7. Thus
W _ st 1
X0 = ¢ ( . >

is a solution. To find the second solution, we calculate

2 1
aa (3L,

Now we if take

then 7 satisfies

Thus 7 is a generalized eigenvector of rank 2. Hence

x = e’\t(n—l—tm)

= () (4)
e ()

is another solution to the system. Therefore the general solution is

1 142t
5t 5t
X‘“(—z) 626<—4t)

Ot c1 + ca + 2ot
o —261 — 4C2t
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Example 6.3.6. Solve

0 1 2
x = -5 -3 -7 |x
1 0 0

Solution: The characteristic equation of the coefficient matrix A is

Ao -1 =2
5 A+3 7| =0
-1 0 A

A +1) = o.

Thus A has an eigenvalue A = —1 of multiplicity 3. By considering

1 1 2
A+I=| -5 -2 -7
1 0 1

we see that the associated eigenspace is of dimension 1 and is spanned by (1,1, —l)T. We need
to find a generalized eigenvector of rank 3, that is, a vector n such that

{(A+D%#0
(A+TI)3n=0

Note that by Cayley-Hamilton Theorem, we have (A+1)3 = 0. Thus the condition (A+1I)%n =0
is automatic. We need to find 7 which satisfies the first condition. Now we take n = (1,0, 0)7,
then

( 1
m=(A+In=1| =5 | #0,
1
-2
n=A+I)?’n=| -2 | #0.
L 2
(One may verify that (A + I)3n = 0 though it is automatic.) Therefore ¢ is a generalized
eigenvector of rank 3 associated with A = —1. Hence
( -2
x() = eMpy=et | -2
2
1—-2¢
x®) = My +tmp) =t | —5—2t
1+ 2¢
14+t—1t2
xB) = M4ty + %ng) =et| —5t—+¢2
\ t+ ¢
form a fundamental set of solutions to the system. O
Example 6.3.7. Solve
0O 1 -2
xX=18 -1 6 X
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Solution: The characteristic equation of the coefficient matrix A

A -1 2
-8 A+1 -6 = 0
-7 3 A—=38

A=3)(A—2)?2 = 0

has a simple root A\; = 3 and a double root Ay = A3 = 2. The eigenspace associated with the
simple root A\; = 3 is of dimension 1 and is spanned by (—1,1,2)”. The eigenspace associated
with the double root Ay = A3 = 2 is of dimension 1 and is spanned by (0, 2, 1)T. We obtain two
linearly independent solutions

-1
x(D) = 3t 1
2
0
x(2) =2t [ 2
1

To find the third solution, we need to find a generalized eigenvector of rank 2 associated with
the double root Ay = A3 = 2. The null space of

-2 1 -2 -2 1 -2
(A-2I)?=| 8 -3 6 =1 2 -1 2
7 -3 6 4 -2 4

is spanned by (0,2,1)7 and (1,0, —1)7. One may check that (0,2,1)7 is an ordinary eigenvector.
Now

1
(A-20)| o |=| 2 |#0
~1
-2 1 =2 0
(A-202| o |=| 8 -3 6 2 |=0
-1 7 -3 6 1

Thus (1,0, —1)7 is a generalized eigenvector of rank 2 associated with A = 2. Let

( 1
n=1 0
-1
0
m=(A-2Dp=1 2
1
We obtain the third solution
1 0 1
xB) = My +tn) = e* +t| 2 =2t 2t
-1 1 141
Therefore the general solution is
-1 0 1
X =c e3t 1 + 0262t 2 + 0362t 2t

2 1 -1+
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Exercise 6.3

1. Find the general solution to the system x’ = Ax for the given matrix A.

12 1 0 0
(a)A_<—2 —3) fH A= -2 —2 -3
2 1 2 3 4
b) A=
(®) (—1 —4> 3 -1 =3
(3 -1 @ A=[1 1 -3
@a-( ) 0 0 3
-3 0 -4 3 1 -1
@ A=| -1 -1 -1 ) A=| -1 2 1
10 1 111
10 1
() A= 0 1 —4
0 1 -3

6.4 Matrix exponential

Let A be an n x n matrix. We are going to define e. This cannot be interpreted as ‘e to the
power A’ because we do not know how to define raising to the power of a matrix. However the
exponential function is defined by

2 .%"5

[e.e]
Z£_1+x+$—+—+
23 3|

and the right hand side is defined when x is a square matrix. This inspires us to make the
following definition.

Definition 6.4.1 (Matrix exponential). Let A be an n X n matriz. The matrix exponential

of A is defined as
Ak

o0
_ 1 2 1 3
exp(A kzk =T+A+ A A7+

The matriz exponential of A may also be denoted by e™.

For the purpose of solving system of differential equations, it is helpful to consider matrix valued

function
0 Akt

Akt
exp(At) = o =l AL+S A2t2+ A3t3
k=0

for constant square matrix A and real variable t. It is not difficult to calculate exp(At) if A is
diagonalizable.

Theorem 6.4.2. Suppose

A
1)\2 0
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1 a diagonal matriz. Then

6)\1t 0
Aot

e

0 o

Moreover, for any n x n matriz A, if there exists non-singular matriz P such that P~'AP =D
1 a diagonal matriz. Then

exp(Dt) =

exp(At) = Pexp(Dt)P L.

Example 6.4.3. Find exp(At) where

Solution: Diagonalizing A, we have

() G 5)-05)

1 et 0 2 1\ '
-3 0 e 2 1 -3

1 et 0 \1/3 1
-3 0 e2 )71 -2

Therefore

O
Theorem 6.4.4. Suppose there exists positive integer k such that A = 0, then
1 1 .
At) =T+ At + A%+ A3 .. il
exp(At) + At + o1 + 3 +-+ = 1)
Proof. Tt follows easily from the fact that A' = 0 for all [ > k. O
Example 6.4.5. Find exp(At) where
01 3
A= 0 0 2
000
Solution: First compute
0 0 2 0 00
A’=100 0 and A= 0 0 0
0 00 0 00
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Therefore

1
exp(At) = I+ At+ -A*?

2
100 01 3 2 0 0 2
= 01 0]+t 00 2 +§000
0 01 0 00 0 00
1t 3t+2t2
= 01 2t
0 0 1
O
Theorem 6.4.6. Let A be an n x n matrixz. Then
d
7 exp(At) = Aexp(At)
Proof.
d d 1 1
—exp(At) = — ([I+At+=A%2+ —A33+...
dtexp( t) dt( + t+2! t —1—3! 7+
1 1
= O+A+§A2(2t)+§A3(3t2)+---
1
= A+A2t+§A3t2+~--
1
— A<I+At+2‘A2t2+-~>
= Aexp(At)
O]

The above theorem implies that the column vectors of exp(At) satisfies the system of first order
linear differential equations x’ = Ax.

Theorem 6.4.7. Let A be an n x n matriz and write exp(At) = [x1(t) x2(t) -+ x,(t)], which
means x1(t),xa(t), -+ ,xn(t) are the column vectors of exp(At). Then x1(t),xa(t), - ,xn(t)
are solutions to the system x' = Ax.

Proof. By Theorem we have

d
—exp(At) = Aexp(At)

dt
Lt xlt) - xa®)] = Apa(t) xa(t) - xu(0)
() (1) - X(0)] = [Axi(t) Axa(t) - Ax(t)]
Therefore x), = Axy, for k=1,2,--- ,n. O

Theorem 6.4.8 (Properties of matrix exponential). Let A and B be two n x n matrices and
a,b be any scalars. Then the following statements hold.

1. exp(0) =1
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2. exp((a+ b)At) = exp(aAt) exp(bAt)

3. exp(—At) = (exp(At))~?

4. If AB = BA, then exp((A + B)t) = exp(At) exp(Bt).

5. For any non-singular matriz P, we have exp(P~1APt) = P~ lexp(At)P

6. det(exp(At)) = e"A). (tr(At) = (a11 + a + -+ + ann )t is the trace of At.)

1 1
Proof. 1. exp(0) =1+0+ ‘024_ —03 ... =1

2! 3!

o0 k A ktk
exp((a+b)At) = Z a—l—b At

k=0
00

k'a’bk i Aktk
- Z <Z il(k —z)!) k!

k=0 \i=0

B i k aibk—i Akk
(ke — i)l

— il(k —1)!
o0 oo

Sy erA iy
= e
i= 0] 0 Zj

[o@]

’L Ztl A]t]
= Z 2=

= exp(aAt) exp(bAt)

Here we have changed the order of summation of an infinite series in the fourth line and
we can do so because the exponential series is absolutely convergent.

3. From the first and second parts, we have exp(At) exp(—At) = exp((t—t)A) = exp(0) = 1.
Thus exp(—At) = (exp(At))~*

exp(t(A +B)) = ZT
> EIATBF—\ ¢F
= = )= AB = BA
D (; ik —z’)!) p (We used )
- Zi Ain—itk
55 il(k —i)!

ABItitI
= g E — (We changed the order of summation)
— £ ilj!
=0 j=0

O AT Bjt]
= Z

7=0
= exp(At)exp(Bt)
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5.
1 1
exp(P'APt) = I+P'APt+ 5(P—lAP)%2 + 5(P—lAP)%3 SR
. A2 A33
= P'IP+P (AP + P! T P! P+
A2t2 A3t3 ‘ .
= P—1<I+At++ +--->P
2! 3!
= P lexp(At)P
6. Write exp(At) = [x1 X2 -+ X,|, which means x1, X2, -, X, are the column vectors of
exp(At). By Theorem X} is solution to x’ = Ax for £ = 1,2,--- ,n. Now the
Wronskian of x1,Xa,- -+, X, is

W (t) = det[x1 x2 --- X,] = det(exp(At))

Observe that W (0) = det(exp(0)) = det(I) = 1. Moreover by Abel’s theorem for system
of differential equations (Theorem , W(t) satisfies the first order linear equation
W'(t) = tr(A)W(t). By solving the initial value problem

W' =tr(A)W
wW(0) =1

we conclude that det(exp(At)) is equal to W (t) = (),
O

The assumption AB = BA is necessary in (4) of the above theorem as explained in the following
example. Let
10 01
A=(10) mam= (1)
Then AB # BA. Now
11 el et —1
exp((A+B)t)—exp<(0 0>t>—< 0 1 >

exp(At) = (6(; ?)

exp(Bt) = I+Bt:<(1) i)

One the other hand

and

exp(At) exp(Bt) = < 6(; " ) ( (1) ' ) _ ( %t tft ) £ exp((A + B)t)

Matrix exponential can be used to find the solution of an initial value problem.

Theorem 6.4.9. The unique solution to the initial value problem

x = Ax
x(0) = xg

x(t) = exp(At)xg

18
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Proof. For x(t) = exp(At)xg, we have

d
x'(t) = 7 exp(At)xg = A exp(At)xg = Ax(t)

and
x'(0) = exp(0)x¢ = Ixp = xq

Therefore x(t) = exp(At)xp is the solution to the initial value problem.

Example 6.4.10. Solve the initial value problem

{x02%

5 4 2
A-(_8 _7) andx0—<_1>

Solution: Solving the characteristic equation

where

A—5 —4 _
8 A+7
MN4+22-3 = 0

A= 1,-3

For A1 = 1, an associated eigenvector is

(1)

For Ay = —3, an associated eigenvector is

Thus the matrix

diagonalizes A and we have

Hence

exp(At) = Pexp(Dt)P!

(LR L)

(a5 )

_ ¢t — e~ et —e™
- —2¢t +2e‘3t —e +26_3t

133
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Therefore the solution to the initial problem is

x = exp(At)xg
2et — =3t el — e 2
- < —2¢t + 273 et 4 2e7 3 > ( -1 >
3et — =3
- ( —3et 4 2¢7 3 )
Exercise 6.4

1. Find exp(At) where A is the following matrix.

(a)(ig> (f) ; i —11
o (1) o
0 (3 5) AU
(d)<—02§> 0 —4 1
o (0) oln

3. Let A be a 2 x 2 matrix. Suppose the eigenvalues of A are r = A 4 i, with A € R, u > 0.
Let

A -1
J= P where I is the identity matrix.
(a) Show that J? = —L.
(b) Show that exp(At) = e*(Icos ut + J sin put).

(c) Use the result in (b), or otherwise, to find exp(At) where A the following matrix.

o (72) @ (13)
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6.5 Jordan normal forms

When a matrix is not diagonalizable, its matrix exponential can be calculated using Jordan
normal form.

Definition 6.5.1. An n x n matriz J is called a Jordan matrix if it is of the form

B
1B2 0

where each B; is of the form either

NI = . or !

0 Ai 0 i
FEach B; is called a Jordan block of J.
Note that a diagonal matrix is a Jordan matrix. So Jordan matrix is a generalization of diagonal

matrix. The matrix exponential of a diagonal matrix is easy to calculate (Theorem [6.4.2)). The
matrix exponential of a Jordan matrix can be calculated with a slightly harder effort.

B
1 B, 0
0 =,

Theorem 6.5.2. Let

be a Jordan matriz. Then
exp(Bt) 0

exp(Jt) =

where
1 Ai
0 0
et if B;= y
0 0
exp(B;t) = 1 ¢ B e
S g
6)\77& . if Bz: )\i
’ 1
t
k 0 0 Ai
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Proof. Using the property exp(A + B) = exp(A)exp(B) if AB = BA, it suffices to prove the
formula for exp(B;t). When B; = A1, it is obvious that exp(It) = e*'I. Finally we have

Ao 1 O

exp Ai t| = exp
S
0

= exp

— it

At 0 0 ¢
Ait O i 0 O
0 t
0 A 0 o
At 0 0 ¢
Ait O 0 O

exp

o
A
-
o ~+

(n—=1)!

~~

0o

The second equality used again the property exp(A + B) = exp(A)exp(B) if AB = BA and
the third equality used the fact that for £ x k matrix

we have

01

0

—_

Nk+1 -0

and hence

1
exp(Nt) =1+ Nt + ENQtQ 4o

1

kyk
k!Nt

Example 6.5.3. Find exp(Jt) where J is the following Jordan matriz.

-3 1 0
2 0o -3 1
0 0 -3
2 0 0
3. 0o -1 1
0O 0 -1
Solution:

1 ¢
_ At
1. exp(Jt) =e ( 01 )
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1t &
2
2. exp(Jt)=e [ 0 1 ¢
0 0 1
e 0 0

3. exp(Jt) = 0 et
0 0 et

O

Diagonalizable matrix is a matrix similar to a diagonal matrix. It can be proved that any matrix
is similar to a Jordan normal matrix.

Definition 6.5.4 (Jordan normal form). Let A be an n x n matriz. If J is a Jordan matriz
similar to A, then J is called’] the Jordan normal form of A.

To diagonalize an n x n matrix, we need to find n linearly independent eigenvectors. To find
the Jordan normal form, we need to find generalized eigenvectors. Recall that a generalized
eigenvector of rank k£ associated with eigenvalue ) is a vector such that

(A~ XDy £0,
{ (A = \D)Fnp =o0.

A vector is a generalized eigenvector of rank 1 if and only if it is an ordinary eigenvector. If 7
is a generalized eigenvector of rank k > 1, then 1; = (A — AI)'n is a generalized eigenvector of
rank k—¢ fori =1,2,--- ,k— 1. In particular, np_1 = (A — )\I)k_ln is an ordinary eigenvector.

Theorem 6.5.5. Let A be an n X n matriz. Then there exists non-singular matriz

Q=[" M1 - m m]l
where n;, 1 =1,2,--- ,n, are column vectors of Q, such that the following statements hold.
1. For anyi=1,2,--- ,n, the vector n; is a generalized eigenvector of A.

2. If n; is a generalized eigenvector of rank k > 1 associated with eigenvalue A;, then
Nit1 = (A = AD)n;

In this case n;+1 s a generalized eigenvector of rank k — 1 associated with the same eigen-
value \;.

Furthermore, if Q is a non-singular matrixz which satisfies the above conditions, then

J=Q'AQ

is the Jordan normal form of A.

Note that the Jordan normal form of a matrix is unique up to a permutation of Jordan blocks.
We can calculate the matrix exponential of a matrix using its Jordan normal form.

Theorem 6.5.6. Let A be an n X n matriz and Q be a non-singular matriz such that J =
Q'AQ is the Jordan normal form of A. Then

exp(At) = Qexp(J1)Q ™

3For any square matrix, the Jordan normal form exists and is unique up to permutation of Jordan blocks.
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Let’s discuss the case for non-diagonalizable 2 x 2 and 3 x 3 matrices.

Example 6.5.7. Let A be a non-diagonalizable 2 X 2 matrixz. Then A has only one eigenvalue
A1 and the associated eigenspace is of dimension 1. There exists a generalized eigenvector n of
rank 2. Let ;1 = (A —MI)np and Q= m n ]. The Jordan normal form of A is

A1
-1 7 1
Q AQ=J= ( 0 > .
The minimal polynomial of A is (x — A\1)?. The matriz exponential is
At It 1
exp(At) = eM'Q 0 1 Q.
Example 6.5.8. Let A be a non-diagonalizable 3 x 3 matrixz. There are 3 possible cases.

1. There is one triple eigenvalue \1 and the associated eigenspace is of dimension 1. Then
there exists a generalized eigenvector n of rank 8. Let n1 = (A — AI)n, o = (A — MI)%p
and Q=[m m 7], we have

Mo100
Q'AQ=J=| 0 X\ 1
0 0 X\

The minimal polynomial of A is (x — A\1)>. The matriz ezponential is

2

1t 5
exp(At) = AMQl o1 ¢t | QL
0 0 1

2. There is one triple eigenvalue A1 and the associated eigenspace is of dimension 2. Then
there exists a generalized eigenvector n of rank 2 and an eigenvector & such that £, n and
m = (A — \I)n are linearly independent. Let Q = & m1 1 ], we have

M 00
Q'AQ=J=| 0 A 1
0 0 N\

The minimal polynomial of A is (x — A\1)?. The matriz exzponential is

1 0 0
exp(At) = AMtQl 01t | Q.
0 01

3. There is one simple eigenvalue A1 and one double eigenvalue Ay and both of the associated
eigenspaces are of dimension 2. Then there exists an eigenvector £ associated with A1 and
a generalized eigenvector n of rank 2 associated with \o. Let n1 = (A — X\I)n (note that
&, n, m must be linearly independent) and Q=& m n |, we have

M 00
Q'AQ=J=| 0 X\ 1
0 0 X

The minimal polynomial of A is (x — M\1)(x — X2)2. The matriz exponential is

eMt 0 0
exp(At) = Q 0 eMt geret | QL
0 0 et
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Example 6.5.9. Find exp(At) where

Solution: Solving the characteristic equation
A=5 1 ‘
-1 AX-=3
A=5)A=3)+1 = 0
A —8A+16 = 0
(-4 =
A = 4.4

we see that A has only one eigenvalue A = 4. Consider

det(A —4D)¢ = 0

1 -1
(1 o)e =

we can find only one linearly independent eigenvector & = (1,1)”. Thus A is not diagonalizable.
To find exp(At), we need to find a generalized eigenvector of rank 2. Now we take

= ()

oo (-
coneon-(1 3)[1)-

We see that n is a generalized eigenvector of rank 2 associated with eigenvalue A = 4. We may

let
Q:[mﬁ]:<i é)

and let

Then

is the Jordan normal form of A. Therefore

exp(At) = Qexp(JH) Q™!
- (o)1) )
_ e4t<1;i—t 1—_tt>
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Example 6.5.10. Find exp(At) where

A=| -1

w
N — =
N O O

Solution: Solving the characteristic equation

A—-3 -1 0

1 A—=1 0 =0
-3 -2 A-2
A=2)(A=3)A-1)+1) = 0
A=2)(A\2—4r+4) = 0
A=2)2 = 0
A= 2,22

we see that A has only one eigenvalue A = 2. Consider

det(A -2I)¢ = O

1 1 0
~1 -1 0 |¢& =0
32 0

we can find only one linearly independent eigenvector ¢ = (0,0,1)”. Thus A is not diagonaliz-
able. To find exp(At), we need to find a generalized eigenvector of rank 3. Now we take

1
n=1| 0
0
and let )
1 1 1
(A —2I)n -1 -1 0 0 ]1=1 —1
3 2 0 3
1 1 0 1 0
m=A-2I)m=] -1 -1 0 -1 ]1=10
3 2 0 3
1 1 0 0
n=A-2Inp=] -1 -1 0 0 |=0
3 2 0

We see that n is a generalized eigenvector of rank 3 associated with eigenvalue A = 2. We may
let

Q=[mmn=10 -10
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Then
J = Q'AQ
01 1\ '/ 3 10 0 1 1
= 0 -1 0 -1 10 0 -1 0
1 3 0 3 2 2 1 3 0
0 3 1 3 10 0 1 1
= 0 -1 0 -1 1 0 0 -1 0
1 1 O 3 2 2 1 3 O
21 0
= 0 2 1
00 2
is the Jordan normal form of A. Therefore
exp(A) = Qexp(J)Q!
0 1 1 1t 8 0 3 1
= 0 -1 0 el o1 ¢ -1 0
1 3 0 0 0 1 1 1 0
1+t t 0
= th _t l_t O
t? 2
3t+L 2+L 1
O

Exercise 6.5

1. For the given matrix A, find the Jordan normal form of A and the matrix exponential

exp(At).
w (4 -1 1 1
Y1 o2 @ 1 2 7
-1 -3 -7
(b) <1 —4> 2 0 -1
4 -7
o 4 4
0 -1 0
5 -1 1
@ 1 3 o -1 3 9
-3 2 1 (& | 0 2 0
1 -1 5
—2 -9 0 10 15 22
@[ 1 4 o h) [ -4 -4 -8
1 3 1 -1 -3 -3

6.6 Fundamental matrices

Let x x® ... x( be n linearly independent solutions to the system x' = Ax. We can put
the solutions together and form a matrix ¥(t) = [x(V,x®) ... x(]. This matrix is called a
fundamental matrix for the system.
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Definition 6.6.1 (Fundamental matrix). A matriz function ¥(t) is called a fundamental
matrix for the system x' = Ax if the column vectors of ¥ (t) form a fundamental set of solutions
for the system.

We may consider fundamental matrices as solutions to the matrix differential equation X'(t) =
AX(t) where X(¢) is an n X n matrix function of ¢.

Theorem 6.6.2. A matriz function ¥(t) is a fundamental matrixz for the system x' = Ax if
and only if W(t) satisfies the matrixz differential equation % = AW and ¥(ty) is non-singular
for some tg.

Proof. For any vector valued functions x(M(t),x®)(¢),--- ,x("(t), consider the matrix
U(t) = [ xD x@ ... x0) ] .
We have
aw dxM  dx®@ dx()
dt e dt  dt
and
AT = [ Ax(D Ax®) ... Ax() ]
Thus ¥ satisfies the equation
W _ g
dt
if and only if x(¥ is a solution to the system x’ = Ax for any i = 1,2, --- ,n. Now the solutions
xW (), x@(t),-- ,x(M(t) form a fundamental set of solutions if and only if they are linearly
independent at some t if and only if W(¢() is non-singular for some ty. ]

Theorem 6.6.3. The matriz exponential exp(At) is a fundamental matriz for the system x' =
Ax.

Proof. The matrix exponential exp(At) satisfies % exp(At) = Aexp(At) and when t = 0, the
value of exp(At) is I which is non-singular. Thus exp(At) is a fundamental matrix for the
system x’ = Ax by Theorem [6.6.2] O

If ¥ is a fundamental matrix, we can multiply any non-singular matrix from the right to obtain
another fundamental matrix.

Theorem 6.6.4. Let ¥ be a fundamental matriz for the system x' = Ax and P be a non-
singular constant matriz. Then ()P is also a fundamental matriz for the system.

Proof. Observe that

d

a(\ll(t)P) =9'(H)P = AP (H)P
and ¥(¢)P is non-singular for any t. Thus ¥(¢)P is a fundamental matrix for the system
x' = Ax. O

Caution: In general PW(¢) is not a fundamental matrix.

The theorem below is useful in finding a fundamental matrix for a system.

Theorem 6.6.5. Let A be an n X n matriz.
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1. Suppose P is a non-singular matriz such that P~'AP = D is a diagonal matriz. Then

W (t) = Pexp(Dt)

1s a fundamental matriz for the system x' = Ax.

2. Suppose Q is a non-singular matriz such that P~'AP = J is a Jordan matriz. Then

¥ (1) = Qexp(It)

is a fundamental matriz for the system x' = Ax.

Proof. For the first statement, since exp(At) = P exp(Dt)P~! is a fundamental matrix (Theo-
rem [6.6.3]) for the system x’ = Ax, we have ¥(¢) = P exp(Dt) = exp(At)P is also a fundamental

matrix by Theorem The proof of the second statement is similar.

Example 6.6.6. Find a fundamental matriz for the system

x'—22x
S \3 1)

Solution: Solving the characteristic equation

A—2 =2
RPN I
AN —-3\—4 = 0
A = 4,-1.

For A\ = 4, an associated eigenvector is
For Ay = —1, an associated eigenvector is

Hence the matrix

Polacl= () %)

diagonalizes A and we have
P !AP=D= ( 10 )

0 -1

Therefore a fundamental matrix for the system is

U(t) = Pexp(Dt)
(1 2 et 0
N ( 1 -3 > ( 0 et )
e4t 26—t
= < edt gt >

O
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Example 6.6.7. Find a fundamental matriz for the system x' = Ax where

1 -3
A= .
(3 7)
Solution: By solving the characteristic equation, we see that A has only one eigenvalue A = 4.
Taking n = (1,0)7, we have

-3 -3 1 -3
e (2 2)(0)-(5)
?72:(A—41)n1=<_33 ‘j)(j):o

(In fact mo = 0 is automatic by Cayley-Hamilton theorem since A has only one eigenvalue
A =4.) Thus n is a generalized eigenvector of rank 2 associated with A = 4. Now we take

Q=[7717]]:<_33 é)

4 1

—1 _ _

Q AQ= < 0 4 ) =J

is the Jordan normal form of A. Therefore a fundamental matrix for the system is

T(t) = Qexp(Jt)
- (o) (o 1))
_ e4t<_33 1;t3t)

Then

O
Example 6.6.8. Find a fundamental matriz for the system x' = Ax where
o 1 2
A=| -5 -3 -7
1 0 0
Solution: By solving the characteristic equation, we see that A has only one eigenvalue A = —1.
Taking n = (1,0,0)”, we have
11 2 1 1
m=A+In=| -5 -2 -7 0 |=1] -5
10 1 0 1
1 1 2 1 -2
m=A+I)m=| -5 -2 -7 =5 | =1 -2
1 0 1 1 2
1 1 2 -2
m=A+Dp=| -5 -2 -7 -2 | =0
1 0 1 2
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(In fact n3 = 0 is automatic by Cayley-Hamilton theorem since A has only one eigenvalue

A = —1.) Thus 7 is a generalized eigenvector of rank 3 associated with A = —1. Now we take
-2 1 1
Q=[m m nl=| -2 -5 0
2 1 0
Then
-1 1 0
Q'AQ=| 0 -1 1 |=1J
0 0 -1

is the Jordan form of A. Therefore a fundamental matrix for the system is

¥ = Qexp(Jt)

2

-2 1 1 1t £
= -2 -5 0 et o1 ¢t
2 1 0 00 1

-2 1—-2t 1+4+t—1t2
= e¢t| -2 —5—t —bHt—1¢2
2 1—2t t+¢2

g

We have seen how exp(At) can be used to write down the solution of an initial value problem
(Theorem [6.4.9). We can also use it to find fundamental matrix with initial condition.

Theorem 6.6.9. Let A be an n X n matriz. For any n X n non-singular matriz ¥y, the unique
fundamental matriz ¥ (t) for the system x' = Ax which satisfies the initial condition ¥ (t) = ¥,
is W(t) = exp(At)Py.

Proof. For ¥(t) = exp(At)¥y, we have

W'(t) = %(exp(At)\Ilo) = Aexp(At)¥o=AY(1)

Moreover ¥(0) = exp(0)¥o = I¥, = ¥ and is non-singular. Therefore ¥(¢) is a fundamental
matrix with ¥(0) = ¥(. Such fundamental matrix is unique by the uniqueness of solution to

initial value problem (Theorem [6.1.2)). O

Example 6.6.10. Find a fundamental matriz ®(t) for the system x' = Ax with ¥(0) = ¥,

where
1 9 1 0
A_<—1 _5>and\I!0—<_1 2)

Solution: By solving the characteristic equation, A has only one eigenvalue A\ = —2. Taking

n=(1,0)", we have
771=(A+2I)77=<_31 _93)((1)):<—31)

and 72 = (A + 2I)2 = 0 by Cayley-Hamilton theorem. Thus 7 is a generalized eigenvector
associated with A = —2. Now taking

Q:[mn]:(_?)l [1)>



Systems of first order linear equations 146

we have
1 (-2 1 _
is the Jordan normal form of A. Thus

exp(At) = Qexp(JH) Q™!
- (L) (o)) )
o[ 143t 9t
- ¢ < —t 1—3t)

Therefore the required fundamental matrix with initial condition is

P¥(t) = exp(At)¥,

o [ 1+ 3t ot 1 0
= e
—t 1-3¢ -1 2
_ 1— 6t 18t
—-1+2t 2-—6t
Exercise 6.6

1. Find a fundamental matrix for the system x’ = Ax where A is the following matrix.

(a) (2 :;) (L) s 5
) (‘11 —12) 23 1o _01
© <f :2> (i) :421 ; —14
o (55) o2z
o (73 o
o (5 2 AT
() ; 1 —11 (1) _02 :3 —31
-8 -5 -3 0 1 -3

2. Find the fundamental matrix ® which satisfies ®(0) = ®¢ for the system x’ = Ax for the
given matrices A and ®g.

(a)A:(—gl —42>;‘I’°:<§ —01>
wa=( 7 3 )= 0))
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1 1 1 1 1 0
A= 2 1 -1 |;®&=| -1 -2 0
-3 2 4 0 1 2

3. Let A be a square matrix and ¥ be a fundamental matrix for the system x’ = Ax.

(a) Prove that for any non-singular constant matrix Q, we have QW is a fundamental
matrix for the system if and only if QA = AQ.

(b) Prove that (¥7)~! is a fundamental matrix for the system x’ = —ATx.

4. Prove that if ¥y (t) and Wy(t) are two fundamental matrices for a system, then ¥y = ¥ P
for some non-singular matrix P.

6.7 Nonhomogeneous linear systems
We now turn to nonhomogeneous system
x = Ax+g(t)

where g(t) is a continuous vector valued function. The general solution of the system can be
expressed as

where x(1) ... x(" is a fundamental set of solutions to the associated homogeneous system
x' = Ax and x, is a particular solution to the nonhomogeneous system. So to solve the
nonhomogeneous system, it suffices to find a particular solution. We will briefly describe two
methods for finding a particular solution.

Variation of parameters
The first method we introduce is variation of parameters.

Theorem 6.7.1. Let ¥(t) be a fundamental matriz for the system x'(t) = Ax(t) and g(t) be a
continuous vector valued function. Then a particular solution to the nonhomogeneous system

x'(t) = Ax(t) + g(t)
18 given by
X, = \Il(t)/\Il_l(t)g(t)dt
Moreover the solution to the initial value problem
{ X(t) = A@)x(t)+g(t)
X(to) = X
s given by

x(t) = ¥(t) (\Il_l(to)xo + \Il_l(s)g(s)d,S)

to

In particular the solution to the nonhomogeneous system with initial condition x(0) = Xq is

x(t) = exp(At) <x0 + /O t exp(—As)g(s)ds>
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Proof. We check that x, = W(t) [ ®~1(t)g(t)dt satisfies the nonhomogeneous system.

X, = d% (\Il(t) / \Il_l(t)g(t)dt>

= \p’/\Iz—lgdt+\Ifi </‘Il_1gdt>

= A\Il/\Illgdt—i—\Il\Illg
= Ax,+g

x(0) = (o) (¥ (o + tw-%s)g(s)ds)

to

satisfies the nonhomogeneous system. Since x satisfies the initial condition

o) = W) (%7 (t0)xo + t°w-1<s>g<s>ds)

‘Il(to)‘:[’_l (to)Xo

= XO

it is the unique solution to the initial value problem. In particular, exp(At) is a fundamental
matrix which is equal to the identity matrix I when ¢ = 0. Therefore the solution to the
nonhomogeneous system with initial condition x(0) = xg is

x = en(an) ((ep(0) 0+ [ (ep(an) Tg(s)is)
= exp(At) <x0 + /Ot exp(—As)g(s)ds)
Here we used the fact that the inverse of exp(As) is exp(—As). O
The above theorem works even when the coefficient matrix of the system is not constant. Suppose
P (t) is a fundamental matrix for the homogeneous system x'(t) = P(¢)x(t) where P(t) is a

continuous matrix valued function. That means ¥'(¢) = P(¢)®(¢) and ¥ () is non-singular for
some to. Then a particular solution to the nonhomogeneous system x'(t) = P(¢)x(t) + g(t) is

x,(t) = (1) / T (D)g(t)dt

and the solution to the system with initial condition x(tp) = % is
t
x(t) = ¥(t) (‘I’l(to)xo + \Ill(s)g(s)ds)
to

Example 6.7.2. Use method of variation of parameters to find a particular solution for the
system x' = Ax + g(t) where

A:<_12 _12> and g(t):<4168;t>.
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Solution: The eigenvalues of A are A\; = —3 and A\ = —1 with eigenvectors (1, —1)7 and (1,

respectively. Thus a fundamental matrix of the system is

1 1 e 3t 0 e 3t et
¥ = Pexp(Dt) = < 11 ) ( 0 et ) = ( e A

Now
—3t —t \ ! —t
-1 e e de
ve = (—e‘3t e‘t> ( 18t )
1 e3t _e3t 4€—t
- 2< et et > < 18t )
_ 2¢2t — 9tedt
- 2 + 9tel '
Thus

2t 3t
2e Qtf dt
2+ 9te
o th _ 3t63t + 63t + Cl
- 2t +9te! —9el +¢co /)

/\Illgdt

Therefore a particular solution is

L . 2t gt 4 Bt
L —e 3t et 2t + 9te! — 9et
e 3t (e2! — 3tedt + e3t) + e7H(2t + 9te! — 9¢t)
- —e 73 (e2t — 3tedt + e3) + e7H(2t + 9te! — 9et)

B 2te™t + et + 6t —8
- 2te™t — et +12t — 10
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nr

Example 6.7.3. Solve the initial value problem x' = Ax + g(t) with x(0) = (—=1,1)T, where

A:((l) i) and g(t):<2€0_t>.

Solution: Observe that A is a Jordan matrix. We have

exp(At) = et< (1) ' )

Then we calculate

1 s\
exp(—As) = e (0 1>

(%
/0 exp(—As)g(s)ds — /0 t(f e " ) < e >ds
(
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Therefore the solution to the initial value problem is

Xp

exp(At) <x0 + /O t exp(—As)g(s)ds)
o) (CH)0)
(3 D)

_ < e )

Undetermined coefficients We are not going to discuss the general case of the method of
undetermined coefficients. We only study the nonhomogeneous system

x'(t) = Ax(t) + tFetlg
where g is a constant vector. Then there is a particular solution of the form
Xp = eo‘t(tm+kam+k + tm+k_1am+k_1 + .-+ ta; +ag)

where m is the smallest non-negative integer such that the general solution of the associated
homogeneous system does not contain any term of the form t™e“a and a,, ¢, amik—1, - - , a1, ag
are constant vectors which can be determined by substituting x, to the system. Note that a
particular solution may contain a term of the form t‘e*a; even if it appears in the general
solution of the associated homogeneous system.

Example 6.7.4. Use method of undetermined coefficients to find a particular solution for the
system x' = Ax + g(t) where

A:<_12 _12> and g(t):<4168tt>.

xp(t) =te'a+e b +tc+d

Solution: Let

be a particular solution. (Remark: It is not surprising that the term te~'a appears since A = —1
is an eigenvalue of A. But one should note that we also need the term e~'b. It is because b may
not be an eigenvector. Thus e~'b may not be a solution to the associated homogeneous system
and may appear in the particular solution.) Substituting x, to the nonhomogeneous system, we
have

x;, = Ax,+g(t)

—t
~tetate(a—b)+c = te'Aa+e 'Ab+tAc+ Ad+ ( 416815 >

Comparing the coefficients of te™*, e, ¢, 1, we have
(A+I)a = 0
(A+I)b = a-— < g >

()

Ad = c
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The solution for a, b, c,d of the above equations is not unique and we may take any solution,

say

a:@), bZ(_Og)’ C:<162>’ d:_(180>'

to obtain a particular solution

e (3) () () ()

B 2te™" 46t — 8
T\ 2tet—2e7t 4+ 12t — 10

(Note: This particular solution is not the same as the one given in Example They are
different by (et e~*)T which is a solution to the associated homogeneous system.) O

Exercise 6.7

1. Use the method of variation of parameters to find a particular solution for each of the

following non-homogeneous equations.

(a)x’—(ii)x—i—(%ﬁ?ft) (d)x’—<_02;)>x+(
bee(i () (3 20
ae-(2)ee(8) (3 D)

et
0
et
t

0
cost

2. For each of the nonhomogeneous linear systems in Question 1, write down a suitable form

xp(t) of a particular solution.



7 Answers to exercises

Exercise 1.1

1. (a) y=e3 +Ce® (f) y=Czx —xcosz
(b)y:?x+&5 3 (8) y=3(x+1)2 + Cla+1)*
(c) y=g5+Ce™™
(d) y= C+ln |z| (h) y =sinz + Ccosx
(€) y=3vz+§ (i) y=(1+ e

2. (a) y=e* () y=1+16(x2+4)"2  (e) y="12z 1,3
(b) y = 14+e sinx (d) y = xlni;gngrQl (f) Y= ﬂflgcosx

Exercise 1.2

1. (a) y= zgic (d) y=Ces®

(b) y = (27 + C)? (e) y? +1=Ce®

() y=1+ (2?2 +C)3 () m[l+yl=z+ 122+ C
2. (a) y=awe" ! (d) y=—3e*" =

(b) y = 2¢° (e) y=5sinx

(c) > =1++22—-16 (f)y:tan(x3+§)

Exercise 1.3

1. (a) S22 +dzy—2y'=C (d) x+e +y2=C
(b) 3 +2y2x +2y3 =C (e) 3zt +4y3 + 12ylnz =C
(c) 322y? —azy3 =C (f) sinz +zlny+e¥=C
2. (a) k=2;2%% -3z +4y=0C (c) k=2; 23 +2%° +y* =C
(b) k= —-3;32%y —ay® + 20> =C (d) k=4; 523> + bxy* = C
3. (a) 2y +ia%?=C (c) In|zy| + % =C
(b) z=C (d) D) pan=1 v

Exercise 1.4

1. (a) y?> =2%(In|z| + O) (c) y = 2(C +1In|z|)? (e) y= remrymi
(b) y = zsin(C + In|z|) (d) In|zy| =2yt +C (f) y=—2zIn(C —In|z|)

Exercise 1.5
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(a) ¥ = garam (b) v° = 516w

Exercise 1.6

1. (a) y:6x2+z% (c) y=tan(x +C) —x —3
(b) 2 =2(x+y)2 —2In(1+ (x+)2) +C (d) y=—In(Ce® — 1)
2. (a) y=a+ % (b) y=1+ 3,
Cez —1
Exercise 1.7
1. (a) z=Cry?+Cs (d) y=Inz+ C1z72 + Cy

(b) y = C}cos2x + Cysin 2z (e) y=

(c) y=22+Cilnz + Cy

2. (a) y= ~ (Separable)
(b) y= 21n\x] + C2? (Linear)
(c) 323 + 2y —x — 2y? = C (Exact)
(d) y = («? ) (Bernoulli)
(€) v= "tz (Homogeneous)
(f) ¥ = 1595 marcs (Separable)
(g) y=tan ( +x+ C) (Separable)
(h) y=3—2+ & (Linear)
(i) y=1+ (1—:6)111\1—3:\4-0(1—35) (Linear)
(G) 3z%y% + 2a:y = C (Exact, homogeneous)
(k) y? = W (Homogeneous, Bernoulli)
1) y=2"Y(In|z|+C)"3 (Bernoulli)

Exercise 2.1

=
—
Y
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oo OO, OO OO~ O
| ©O—R O o, O F O
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o o
—
=
N~—

[an}
—_
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+(Ch + 02€$)%
) ¥ +Cry+32+Cy=0
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2. (a) (z1,z2,23) = (13 + 11, 2 4 5a, o)
(b) Inconsistent
(¢) (x1,22,23) = (T — 20,0 — 1, )
(d) (z1,z2,23,74) = (13 + 4,6 + ,5 + 3, @)
(e) (x1,x2,x3,24) = 20 — B, v, 8, 1)
(f) (21,22, 23,24) = (4 +2a = 3B,a,3 - 45, 5)

Exercise 2.2

1. There are many possible answers. For example, A = < 8 (1) ) or < (1) 8 >

2. There are many possible answers. For example, A = ( é —01 > or ( (1) (1) )

3. Let § = A4AT 45d K = ASAT qpep T = ATHADT _ ATHA _ g ang KT =

AT_(2AT)T = ATQ_A = —K. Now we have A = S + K where S is symmetric and K is

skew-symmetric.

4. Let S= A — B = D — C. Observe that S is both symmetric and skew-symmetric. We
must have S = 0. Therefore A = B and C = D.

5.
—(a+d)A + (ad — be)l
a b 1 0
= ( > a+d)<c d>+(ad—bc)<0 1>
_ a?+bc ab+bd _ a?+ad ab+bd n ad — be 0
o ac+cd be+ d? ac+ cd ad+ d? 0 ad — be
=0
6.

(A+B)>=A%+2AB + B?
& A+ AB+BA+B?’=A%2+2AB+B?

& BA=AB
Exercise 2.3
5 —6 -3 0 3
L (a) (—4 5 ) (e L -1 =3 -1
6 —7 -1 2
1
(b) 3 ( -4 5 ) 1 -2
-5 -2 5 5| -5 0 5
(c) 2 1 -2 -3 -1 6
—4 -3 5 1 -1 1 0
18 2 -7 1 -2 -1 2
g —
@ | -3 0o 1 ®sl o 11 4
4 -1 2 -3 3 -5 1
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2. (a) 21 =3,29=-1 (b) x1 =1,29 = —11,23 = 16
3 0 12 -3

3. () | 7 -1 b | -8 1
1 1 —-21 9

4. We have

I+BAHAA+B) '=(A+B)A+B) =1

and
AA+B) ' I+BA ) =AA+B) }(A+B)A 1=ATA ! =1

Therefore (I+BA~1)"1 = A(A+B)™ L.
5. We prove the statement by finding an inverse for I — A. Now
I-A)(IT+A+A% .-+ A
= T+A+A?+  F AP (AT AT A3+ AR
= I-AF
=1
Similarly (I+A+A2+---+AF1)(I-A) = I. Therefore (I-A)~! = I+A+A2+. ..+ AL
6. We prove the statement by finding the inverse of A~! 4+ B~!. Since
(A'+B HA(A+B)"'B = (I+B'A)(A+B)"'B
= B YB+A)A+B)'B
= B'IB
=1

and

AA+B)"'B(A'+B7!) = A(A+B) '(BA1+1I)
= AA+B)}(B+A)A!
= AIA™!
=1
we have (A~1 +B~1)~! = A(A + B)"!B.
7. First we have A~'A = I. Differentiating both sides with respect to ¢, we have
d

—(AT'A) = 0

d d

—A N A+ATI A =

(A7) araa = o
d d
—ATN)A = —ATT A
(#7) dt

d d
—A7l = AT (A )AT!
dt <dt )
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8. Suppose x is a vector such that Ax = 0, then xT Ax = 0 and xTATx = (Ax)Tx = 0.

Now we have

x'STsx
T82

(Sx)"(Sx)

X
xT(A + AT)x
xTAx +xTATx
x70 + (Ax)Tx
0.

X

Thus Sx = 0. Since S is non-singular, we have x = 0. Therefore A is non-singular.

Exercise 2.4

1. (a) —1 (b) —58 (c) 0 (d) 10
2. (a) a (c) (=1)"a (e) &
(b) a? (d) 3"a (f) a™ !
3 -5 =5 1 1 3 2 1 2 =3 3
3. (@) | -3 4 5 ) 5{0 23 @5 2 1 -1
2 -2 =3 0 0 1 -2 -1 9
4. (a) 1'1:1,372:1,333:2 (C) T = %,xg—%,.%g:%
(b) @1 =35m0 = —5,m3 = =3 (d) o1 = -5 o0 = 8,03 = 1
5. Let p(a,b,c) be the given determinant. First note p(a,b,c) is a polynomial of degree 3.

Secondly, if a = b, then the p(a,b,c) = 0. It follows that p(a,b,c) has a factor b — a.
Similarly p(a, b, c) has factors ¢ — b and ¢ — a. Thus p(a,b,c) = k(b — a)(c — b)(c — a)

where k£ is a constant.

Observe that the coefficient of bc? is 1.

p(a,b,¢c) = (b—a)(c—0b)(c—a).

6.
Glay | = g o - s
= dt)d(t) +at)d (t) — b (t)c(t)
= dt)d(t) = b (t)c(t) + a(t)d (t)
_ | d@) V() ‘ N a(t) b(t)
c(t) d(t) d(t) dt)
Exercise 2.5

1. (a) y=2%2-5 b)) y=a2?>—-x+3 (c)

2. (a) 2?4y —6x—4y—12=0 (b) 22+y*—62—8y—75=0

3. y=—a3+32+5

Therefore £ = 1 and

b(t)e (t)
b

(c) 22 +y*+dx+4y—5=0
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Exercise 3.2

1.

Exercise 3.3

1.

(a) y=3+2 (C)y:l%g

() y=100+5 - 15 (@) y =2

(a) Yes (c) No (e) Yes

(b) No (d) Yes (f) No

(a) Yes (¢) No (e) Yes

(b) Yes (d) Yes (f) Yes

(a) Yes (b) No (c) No (d) Yes
(a) Yes (¢) Yes (e) No

(b) No (d) No (f) Yes

(a) Yes (b) Yes (c) No (d) No

. Suppose ¢1(v1+va) +ca(va+vs) +c3(vi+vs) = 0. Then (¢ +e3)vi+ (ca+c1)va+ (c3+

c2)vs = 0. Since vi, vy, v3 are linearly independent, we have ¢;+c3 = co+c¢1 = ec3+c2 = 0.
This implies ¢; = ((¢1 +¢2) + (c1 +¢3) — (c2 +¢3))/2 = 0. Similarly, ¢co = ¢35 = 0. Therefore
vi + Vo, Ve 4 V3, V1 + vg are linearly independent.

. Let vi,vo, -+ ,vg be a set of k vectors. Suppose one of the vectors is zero. Without loss

of generality, we may assume v =0. Then 1-v; +0-vy+---4+0-vp = 0 and not all
of the coefficients of the linear combination are zero. Therefore vi,va, -+ v are linearly
dependent.

Let T' = {v1,va, -+ ,vi} be a set of linearly independent vectors. Let S be a subset of
T. Without loss of generality, we may assume S = {vi,vg,---,v;} for some | < k. To
prove that the set S is linearly independent, suppose civi + cove + - - - + ¢v; = 0. Then
civi+cava+ -4+ ¢vi+0-vipp +---4+0-vp = 0. Since T is linearly independent, all
coefficients c1,¢2, -+ ,¢;,0,---,0 in the linearly combination are zero. Thus ¢; = ¢3 =
-+ =¢; = 0. Therefore S is linearly independent.

. Suppose ¢1v1 + covg + -+ + v +cv = 0. Then vy + covy + - -+ + ¢ v = —cv. Now

c1v1 + cavy + + - - + ¢ v € W which implies —cv € W. However since v # W, we must
have ¢ = 0. It follows that cqvy +cove + -+ ¢vy = 0. Hencecg = ¢cp = --- = ¢, =
0 since vi,Vva, -+ ,vy are linearly independent. Therefore vi,va, -+, v, v are linearly
independent.

Exercise 3.4

1. The answer is not unique.

(a) {(27_1a0)7(470a1)} (b) {(17073)a(0717_1)} (C) {(17_330)’(0’071)}

2. The answer is not unique.
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(a) {(11,7,1)} (d) {(3,-2,1,0),(—4,-3,0,1)}
(b) {(11,-5,1)} (e) {(2,-3,1,0)}
(c) {(—11,-3,1,0),(~11,-5,0,1)} (f) {(1,-3,1,0),(-2,1,0,1)}

Exercise 3.5

1. The answer is not unique.
(a) Null space: {(—11,4,1)"}; Row space: {(1,0,11),(0,1,—4)};
Column space: {(1,1,2)7,(2,5,5)T}

(b) Null space: {(2,-3,1,0)T}; Row space: {(1,0,—2,0),(0,1,3,0),(0,0,0,1)};
Column space: {(1,3,2)7,(1,1,5)T,(1,4,12)T}

(c) Null space: {(2,1,0,0,0)",(-7,0,2,5,1)T};
Row space: {(1,-2,0,0, 7),(0 0,1,0,-2),(0,0,0,1,—=5)};
Column space: {(3,1,1) 1,0,2)" (3,1,0)T}

S (
(d) Null space: {(3,-2,1,0)T, (—4, 3,0, 1)T} Row space: {(1,0,-3,4),(0,1,2,3)};
T

Column space: {(1,1,1,2)T,(1,4,3,5)7}

(e) Null space: {(—1,—-2,1,0)T}; Row space: {(1,0,1,0),(0,1,2,0),(0,0,0,1)};
Column space: {(1 1,1,27,(-2,4,3,2)7,(-5,2,1,-3)T}

(f) Null space: {(—2,-1,1,0,0)7,(~1,-2,0,1,0)"};

Row space: {(1, 0 2, 1,0), (0,1,1,2,0),(0,0,0,0,1)};

Column space: {(1,2,2,3)7,(1,3,3,1)7,(1,2,3,4)"}
(g) Null space: {(_2a_lvlaOaO)Tv(_la_2>OaO7 l)T};

Row space: {(1,0,2,0,1),(0,1,1,0,2),(0,0,0,1,0)};

column space: {(1,-1,2,-2)T,(1,0,3,4)7,(0,1,1,7)T}

2. The answer is not unique.

(a) {(1,0,1,1),(0,1, =1, 1)}

(b) {(1,0,2,2),(0,1,0 1)}

(¢) {(1,0,2,0),(0,1,-2,0),(0,0,0,1)}

(d) {(1,-2,1,1,2),(0,1,1,3,0),(0,0,0,0,1)}
(e) {(1,-3,4,-2,5),(0,0,1,3,-2),(0,0,0,0,1)}

3. Denote by na, ng and nap the nullity of A, B and AB respectively. By the rank nullity
theorem, we have r4 =n—ng, rg =k —np and rqop = k —nap. Now we have (Theorem

3.5.10)
np < NAB <na+np
k—rg< k—rap <(n—ra)+(k—rp)
rg > TAB >rat+rg—n

Moreover, we have
rap = rank((AB)T) = rank(BTAT) < rank(AT) = rank(A) = r4

Therefore
ra+rg—n<rap <min(ra,rp)
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Exercise 3.6

1. The answer is not unique.

3.

(a) {(27170)7(_37()’1)}

(b) {(2,1,0,0),(3,0,1,0),(—5,0,0,1)}

(¢) {(7,-3,1,0),(—19,5,0,1)}

(d) {(-12,-3,1,0),(16,7,0,1)}

(e) {(—13 4,1,0,0), (4, -3 0,1,0),(—11,4,0,0,1)}

(f) {(-=5,1,1,0,0),(—12,4 0,1,0),(—19,7,0,0,1)}

(g) {(-1,-1,1,0,0),(0, -1,1)}

(h) {(~ 2,1,1,0 0), (1,2 0,1,0)}

(a)

u+vPi+lu-v? = u+v,ut+v)+u—v,u—v)

= (u,u)+2(u,v) + (v,v) + (u,u) — 2(u,v) + (v, v)
= 2u]? +2|v|?

(b)

ut+v,ut+v)+u—-—v,u-v)
(u,u) + 2(u, v) + (v,v)) — ((u,u) — 2(u,v) + (v, v))
(u

v)

u+vP:—ju-v? =

(
(
= 4

Suppose w € WNW+. Consider (w,w). Note that the first vector is in W and the second
vector is in W+. We must have (w, w) = 0. Therefore w = 0 and W N W+ = {0}.

. Suppose w € W. For any v € W+, we have (w,v) = 0 since w € W and v € W+. Hence

w € (WH)L. Therefore W C (W+)*+.

. Suppose c;vy + cave + -+ + ¢pvp = 0. For any ¢ = 1,2,...,k, we have ¢1(v;,vy) +

c2(vi, va) + -+ + cp(vi, Vi) = (v4,0) = 0. Since (v4,v;) = 0 whenever i # j, we get
¢i(vi, vi) = 0. Since v; is a non-zero vector, we obtain ¢; = 0 for i = 1,2, --- , k. Therefore
Vv1i,Ve,- -+, Vg are linearly independent.

Exercise 4.1

1.

2.

(a) linearly dependent (d) linearly dependent (g) linearly dependent
(b) linearly independent (e) linearly independent

(c) linearly independent (f) linearly dependent (h) linearly dependent
(a) —bHe™t (c) et (e) e*

(b) 1 (d) t%et (f) 0

3

25

33
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5.
3|3
Winolt) = | g gy
= 3ttt — 3t%|t?

= 0

Suppose y1 and yo are solution to a second order linear equation. Then Theorem
asserts that y; and ys must be linearly dependent since their Wronskian is zero. This
contradicts that fact that y; and ys are linearly independent. Therefore the assumption
that y; and yo are solution to a second order linear equation cannot be true.

6.
I9 Ih
%4 hl(t) =
[fgaf ]() ‘ f’g+fg’ f/h—l-fh’
= fg(f'h+ f0) = fh(f'g+ fd)
— f2gh/ o f2hg/
— f2(gh/ o hg/)
h
= f2 5/ B
= [*Wlg, h](t)
Exercise 4.2
1. (a) y=cit? +cot™t (e) y = c1 cos(t?) + cosin(t?)
(b) y=cit™! +cot™? (f) y=c1it P+ ot tint
(¢) y=cit+cotlnt (8) y = c1t? + cot? Int
(d) y = cie’ + cate! (h) y = ¢y cos(Int) + casin(Int)

Exercise 4.3

1. (a) y=cre 3 4 coe?
(b) y = c1cos3t+ cosin3t

(c) y=c1e? + coe!

(d) y = citet 4 coet

(e) y = e ?(cy cos 3t + cgsin 3t)
(f) y = e'(cy cos 2t + co sin 2t)
(c) y =972 —Te3t

(d) y= 473 cost + 3e” 2 sint

(b) y = c1t? + cat’Inzx

L (a) y=cre® +cpe™t —e?
(b) y= cre~tcos 2t + coetsin 2t + % cos 2t + % sin 2t
(¢) y=cicos3t+ cosin3t + %(9;52 — 6t +1)ed + %
— t —92t 1
(d) y = cie’ + ce —t—5
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=cre b+ cgte ™t + t2et
= cret + cotel + %t3et +4
= ¢1 cos 2t + ¢ sin 2t + itQ — % + %et

Yy
Yy
Yy
y = cre tcos 2t + coe !sin 2t + te tsin 2t
y:cle*t—i—czet 2t+17cost——7smt
Yy

yp = t(Agth + Agtd + Aot? + Ast + Ag) + t(Bat? + Byt + Bo)e 3t + D cos 3t + E'sin 3t
yp = €'(Aj cos 2t + Agsin2t) + (Bt + Bo)e* cost + (Eit + Ep)e* sint

yp = A1t + Ag + t(Bit + By) cost + t(Cit + Cp) sint

yp = Ae™t + t(Bat® + Byt + Bo)e ' cost + t(Cat? + C1t + Cp)e ' sint

yp = A1t + Ao + t*(Bi1t + By) + (Cit + Cp) cost + (D1t + Do) sint

Exercise 4.5

1. (a) y=cre® +coedt + et
(b) y = cre™" + cpe? — 3te™
(c) y=cret +cote ! +2t2 + et
(d) y=cicost + cosint — costlIn(sect + tant)
(e) y = c¢1 cos 3t + co sin 3t + sin 3t In(sec 3t + tan 3t) —
(f) y=cie' + cote’ — 3e' In(1 + %) + te' tan~' ¢
(g) y=cire! +coe® —e P+ elln(l +e7 ) + e In(l +e7?)
2. (a) y=cit '+t + 4 +t2Int (c) y=cit + coe® — 5(2t — 1)e~
(b) y=cit + cotel — 2t2 (d) y= c1t? + cot?Int + 6t2(ln t)

Exercise 4.7

1. (a) yp(t) = At + Btcost+ Ctsint
(b) yp(t) = t(Art + Ag) + t(Bit + Bp)el cost + t(Cyt + Cp)e' sint
() yp(t) = t*(Art + Ap)e’
(d) yp(t) = Ate' + t(Bit + Bp)e*
(e) yp(t) = tQ(Alt + Ap) cost + tZ(Blt + By)sint
(£) yp(t) = t2(Agt® + Art + Ao)
(g) yp(t) = Ate' +t*(Bat* + Bit + Bo)
2. (a) —it? (c) y = et
(b) y = %t%% (d) y =1In(sect) —sintIn(sect + tant)

Exercise 5.1

L (@) M=-1{vi=110DTH X x=2 {vo=(2,1)7}
(b) M =2, {vi=(1,1D)T} X2 =4, {va=(3,2)"}
() =i, {vi=(-1,2+9)T}; Ay = —i, {vo = (—1,2 - )T}
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YA =X =2 {vi = (1,7}
YAM=0,{vi=(1,1,)T =1, {vo=(3,2,1)T}; A3 =2, {v3 = (7,3, 1)T}
YA =2 {vi=(1,1,00T} o= X3 =1, {va=(1,0,0)",v3 = (0,1, -1)T}
(8) M =X =X3=—1, {vi=(1,0,1)7}
(h) M =3, {vi=(1,0,00T}; Ao =3 =1, {vo = (1,0,1)T, v3 = (-3,1,0)"}
) Ai=1,{vi=(1,-1,8)T} Ao =23 =2, {vo2=(0,0,1)"}
) A=A = A3 =—1, {vi=(1,1,0)T, vy = (-5,3,8)T}

2. Suppose A is an eigenvalue of A. Then there exists £ # 0 such that A = \E.

A% = A¢
AN = X
MNAE = X
NE o= X
NF¥=XN¢ =0

Thus A2 — X\ = 0 since & # 0. Therefore A = 0 or 1.
3. (a) Since det(AT — AI) = det(A — AI), the characteristic equation of A and AT are the
same. Therefore AT and A have the same set of eigenvalues.

(b) The matrix A is non-singular if and only if det(A) = 0 if and only if A = 0 is a root
of the characteristic equation det(A — AI) = 0 if and only if A = 0 is an eigenvalue of
A.

(c) Suppose A is an eigenvalue of A. Then there exists £ # 0 such that A = A{. Now
ARE=AFTTAL = AT = AR = = e

Therefore \* is an eigenvalue of A*.

(d) Suppose A is an eigenvalue of a non-singular matrix A. Then there exists £ # 0 such

that
AL = X
¢ = AT\
¢ = M
A = AT

Therefore A™! is an eigenvalue of .

4. Let
a‘ll .« o o e o e aln

a2 -+ A2n

0
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be an upper-triangular matrix. Then A is an eigenvalue of A if and only if

a1 — A a2 a3z - a1n
azx — A\ a3 - aop
=0
0 An—1n
Apn, — A
A—ai1)(A—az) - (A —ann) 0
A = ai,a2, " ,ann

Exercise 5.2

100
020
1 4 9 00 3
01 -1 100
e@P=(01 0 |,D=[0 10
1 2 00 3
11 1 5 0 0
HHP=|1 -1 0 |,D=[0 -1 0
1 0 -1 0 0 -1
1 -1 1 -1.0 0
@P=[1 0 1],D=| 0 10
0 2 1 0 0 2

2. (a) The characteristic equation of the matrix is (A—2)? = 0. There is only one eigenvalue
A\ = 2. For eigenvalue A = 2, the eigenspace is span((1, 1)) which is of dimension 1.
Therefore the matrix is not diagonalizable.

(b) The characteristic equation of the matrix is (A — 2)(A — 1)2 = 0. The algebraic
multiplicity of eigenvalue A = 1 is 2 but the associated eigenspace is spanned by one
vector (1,2, —1)7. Therefore the matrix is not diagonalizable.

(c) The characteristic equation of the matrix is (A — 2)2(A — 1) = 0. The algebraic
multiplicity of eigenvalue A\ = 2 is 2 but the associated eigenspace is spanned by one
vector (1,1, —1)7. Therefore the matrix is not diagonalizable.

3. Suppose A is similar to A. Then there exists non-singular matrix P such that B =

P~!AP. Then B! = (P7!AP)"! = P'A~IP. Therefore A~! is similar to B~!.

4. The answer is negative. Consider A = B = C = ( (2) (1) ) and D = ( (1) (2) ) Then

A B,C,D are all similar. But AC = < 3 (1) ) is not similar to BD = ( (2) g >
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5.

6.

7.

10.

11.

12.

If A is similar to B, then A — Al is similar to B — AI for any A. Thus A and B have the
same characteristic equation. Therefore A and B have the same set of eigenvalues.

Let A = [aij] and B = [le]

n

tr(AB) = > [ABJ
k=0

= > amby

k=0 1=0

n o n
= DD buau
=0 k=0
n

= ) [BAJ

1=0
= tr(BA)

The characteristic equation of the matrix is A2 — (@ + d)A + ad — bc = 0. The discriminant
of the equation is

(a+ d)? — 4(ad — be) = a® — 2ad + d* + 4bc = (a — d)* + 4be.

Hence if the discriminant (a — d)? + 4bc # 0, then the equation has two distinct roots.
This implies that the matrix has two distinct eigenvalues. Their associated eigenvectors
are linearly independent. Therefore the matrix is diagonalizable.

. We have P~'AP = D; and P~!BP = D are diagonal matrices. Thus

AB = (PD,P Y(PD,P})
PD,D,P!
PD,D, P!
(PD,P~1)(PD,P 1)
= BA

. Suppose A is similar to a diagonal matrix D. Then D is similar to A¥ = 0. This implies

that D = 0. It follows that A = 0 since the only matrix similar to the zero matrix is the
zero matrix.

We have A~!(AB)A = BA. Thus AB is similar to BA.

0 0 01
BA are not be similar.

LetA:<O 1>andB:<0 O>. Then AB = A # 0 but BA = 0. So AB and

We claim that the matrices
0O O BA O
P_<A AB)andQ_<A o)

are similar. Then by Theorem the matrices P and Q have the same characteristic
polynomial which implies that AB and BA have the same characteristic polynomial. To
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prove the claim, we have
I BY'/BA o\/I B\ _
0 I A 0 0 I -
_ 0 O
N A AB /-
Caution! In general, AB and BA may not be similar.

Exercise 5.3

65 —66 16 —80 1 —62 31
L () <33 34) (d) <16 16> ®[o 1 o0
96 —96 0 —-62 32

®) {61 —64
16 32 —16 94 —93 31
o (94 -9 (e) | 32 64 —32 (@) | 62 —61 31
62 —61 48 96 —48 0 0 32

2. (a) Observe that AT¢ = ¢ where € = (1,---,1)7, we have AT has an eigenvalue A = 1.
Therefore A has an eigenvalue A = 1.

(b) Write A = [a;;], 1 < 4,57 < n. Let £ = (z1,22, - ,2,)T be an eigenvector of AT
associated with A = 1 and k be such that x; is maximum among z1,xo, - ,2,. In
other words, zj, > x; for any | = 1,2,--- ,n. Now consider the k-th row of AT¢ = ¢

and observe that the sum of the entries of each row of AT is 1, we have

T = Q1xT1 + a2 + -+ appTp

N

S A1gTE + akTE + o AnkTk
(a1 + agk + -+ + ank) T,
= x.
Thus the equality holds on above. It follows that for any [ = 1,2,--- ,n, we have
aixx; = aypry, which implies that z; = xy, since ag, # 0. So € is a multiple of (1,--- ,1)7

and thus the eigenspace of AT associated with A = 1 is of dimension 1. Therefore
the eigenspace of A associated with A = 1 is of dimension 1.

Exercise 5.4

) Minimal polynomial: (z —1)(z —2), A* = 15A — 141, A~! = —2A + 31

) Minimal polynomial: (z —1)2, A* =4A —3I, A~ = —A + 21

) Minimal polynomial: 2 — 2z + 5, A* = —12A +5I, A~ = —%A + %I

d) Minimal polynomial: (z —2)(z —1)%, A* = 11A2 —18A +8I, A~! = 1AZ —2A + II
) z—4)(z—2), A1=120A — 2241, A~ = —{A + 31
) r—1)2, A =4A -3, A" = —A 421
) r+1)(z—1),A* =1, A1 = A

(
Minimal polynomial: (
Minimal polynomial: (

(

Minimal polynomial:
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2. Suppose A and B are similar matrices. Then there exists non-singular matrix P such
that B = P"'AP. Now for any polynomial function p(x), we have p(B) = p(P~1AP) =
P~ !p(A)P. It follows that p(B) = 0 if and only if p(A) = 0. Therefore A and B have

the same minimal polynomial.

3. The minimal polynomial m(z) of A divides z¥ — 1 = 0 which has no repeated factor. It

follows that m(x) is a product of distinct linear factors. Therefore A is diagonalizable by
Theorem [5.4.5)

4. Since A is diagonalizable, by Theorem the minimal polynomial of A? is
(x = A)(x—Ag) -+ (. — Ag)
where Ai, Ao, - -+, A\, are distinct eigenvalues of A2. In particular,
(A% = MI)(A% = XoI) - (A% — N\ D) =
Thus

(A = VAD(A + VAD(A - VAD(A + VAL (A — VAD(A + VA =

It follows that the minimal polynomial of A divides

p(@) = (&= V)@ + V)@ = V)@ + V) (@ = VA @+ V)

Since A is non-singular, the values A1, A, -+, \; are all non-zero and thus p(x) has no
repeated factor. Therefore the minimal polynomial of A is a product of distinct linear
factor and A is diagonalizable by Theorem

Exercise 6.2

T = cie —i—cge
1. (a)

= —cC1e t+02€ t

1 = cre” ! + 3cqett

= —cre t 4 2¢qett

(c1 — 2c2) cos 2t + (2¢1 + c2) sin 2t

= 362t (c1 cos 3t — co sin 3t)

{xl = bcy cos 2t + beo sin 2t

((e1 + ¢2) cos 3t + (c1 — ¢2) sin 3t)

T = cle ¢ 4 62€6t + c3
(€) ¢ zo = c1e” — 2cpeb
xr3 = clegt + ch6t —C3

€T = clth + 6263t + 0363t

(f) < 2o = c1€8 — 2¢pe3!

xr3 = clth + 6263t — 03e3t

71 = c1et + c2(2 cos 2t — sin 2t) + c3(cos 2t + 2sin 2t)

(8) § z2 = —cre! — c2(3cos 2t + sin 2t) + c3(cos 2t — 3sin 2t)
x3 = co(3cos 2t + sin 2t) + c3(3 cos 2t — sin 2t)
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r1 = c1e’ + (co + 2c3)et
(h) { 29 = c1€® — coet

Tr3 = 61€5t — 03et

= %(—eft + 8¢ebt)
=17+ 6e%)

= —5e3t + et
_ 663t _ 664t
= —4et sin 2t
= 4et cos 2t

=43 — e7t(4cost — sint)
=9¢e3 —e7t(9cost + 2sint)
x3 = 17e tcost

. sin 2¢
—2cos 2t + sin 2t

0

3. (a) x=ce¥ < > + coe”

cos 2t
(b) x=0c1 ( cos 2t + 2sin 2t

+ 036721‘/

1

1
1

(d) x = cre +eze?t | 1 )
1

1
1
0
1
+ 626 1
0

—_ O = =

‘(4
)
(c) x = c1e? | + coe” (

Exercise 6.3

0 -2 1-2¢
d) x=etlea| 1 | +e| -1+t | +es| —t+it?
0 1 t
1 t 512
() x=e'far| 0 |+ea| 2 | +es| 1+2¢
0 1 t
3 3 1
f) x=e' || =2 | +ec2| O | +es| —2t
0 —2 2t
1 3 1+t
(g x=e*la| 1 |+e| 0 |+ t
0 1 0
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1 1—t¢ 1+¢t—5
h) x=e?[c; [ 0 | +c -1 + c3 —t
1 1—1¢ t2
Exercise 6.4
L (a) 7 3™ 4 de™2! 3e? — 3¢~ —e?t 423t 0 e et
‘ 4Pt —4e7? 4e® 4 3 () | 2% —2e% e —e' +2e* — ¥
(b) 2e3t — et —2e3t 4 2¢t 2e% —2¢3 0 2e%t — 3
et — et —e3t 4 et 2
1 t &
—2+3e* 3 —3e* 2
(c) ( 2t 2t () 01 ¢
—24+2 3-2
+ 2Ze e 00 1
(d) cos2t sin2t
—sin2t cos2t 1 —t t— 62
() 1 3t (h) 0 1 3t
0 1 0 0 1
2. (a) —5et + 6e3t et + 2e7?
el — 6e3t (c) el —et
—2¢t 47t
1+t+2t2
(b) 2e4t 4 2¢7t (d) 1+ 4t
3ett — 27t 9

3. (a) By Cayley-Hamilton theorem, we have A2 — 2AA + (A2 + p2)I = 0. Thus
p*J3? = (A - ))?
A? —2)\A + NI

Therefore J? =
(b) Now A = AI + pJ. Therefore

@

xp(At)

= exp((AL+ pJ)t)

= exp(AI )exp(u.]t)

= MI(I+ pudt + N u2J2t2 3' M3J3t3

4'“’ 5'“

1 1 1
At 27142 3143 4144 5145
= e (I+th——2!M It —3!u Jt + It + ok J&o+--)

1 1 1 1
X L2 Lo _ L33, + 5,55
= e(I(1 2!ut +4!ut +-) F I (put 3!ut +5!ut +--))
= eM(Icos ut + J sin pt)
© () cost + 2sint —5sint (i) et cos 2t + sin 2t —sin 2¢
sint cost — 2sint 2sin 2t cos 2t — sin 2t

Exercise 6.5
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(3 e (1)

(=31 o 1+4t 4t
(b) _<0 —3>’exp(At)_e < at 1—4t>

310 142t —t t
() IJ=1[ 0 3 1 |, exp(At) =¢3 t+ t2 1—5 % .
003 —3t4+12 2A—L 1-24%
100 1-3t -9 0
(d)J=10 1 1 |,exp(At)=¢l t 1+3t 0
00 1 t 3t 1
2 1 0 1+t+85  t+t? t+ 3%
e)J=| 0 —2 1 |,exp(At)=e? t—t2 144t -2t Tt — 32
0 0 -2 —t+% 342 1-5t+ %
) IJ=[0 2 1 |,exp(At)=e*| 0 1+2t 4t
00 2 0 —t 1-2t
2 00 1-3t 3t -9t
(g) J=1 0 2 1 |,exp(At)=e? 0 1 0
00 2 t  —t 1+3t
~1
M) J=1| 0
0

0
2
0
(3+2t)e? —2e7t  (4+3t)e? —4de7t (64 4t)e? —6e !
exp(At) = ( —4te? (1 —6t)e? —8te?
(=1 +2t)e? + et (=24 3t)e? +2e7t (—2+4t)e? + 37t

Exercise 6.6

1. The answers are not unique.

(a) eit 2% e 2 et e
2et ¥ (h) —e 72 —4el 2e%
P N .
( o3t 2t > 0 R
cost + 2sint —5sint (i) 2%: 03t 62:
sint cost — 2sint e —e e
ac? 1 14+t ¢+
—e2t G) e | 2 2t 14
(e) et 2cos2t —2sin2t 2
sin 2¢ cos 2t 0 e2t o2t
2 2
_o [ 3 3t+1 (k) et 2t te?t
(f) € 3 3t et 0 e2t
—4e”2 3e™t 0 1 —24t —264%
(2) Se 2t —det —e2t 1) e 2| 0 1 1+t

Te 2t _—2¢7t 2t 0 1 t



Answers to exercises 170

4e?t —2¢7t  —4e? 4 et
2. (a) et 4 9ot 2 _ gt

—t  1+5¢

5t

(b) e ( —142t 3—10t >
2e3t 0 —e3t

(c) | 2e3 —2e% 5e3t —8eP  —3e3t 4 47
—5edt 5e3t — 4e5t  —2e3t 4 2e5t

1—2t 1—2t 2t
(d) e® | —1+3t—t> —24+3t—t> -2+t
—5t + t2 1—5t+t2 244t — 2

3. (a) We have QW is non-singular since both Q and ¥ are non-singular. Now QW is a
fundamental matrix for the system if and only if

dQW¥
d
& Qd;‘f = AQU
& QAY = AQVY
& QA = AQ.

= AQVU

(b) By differentiating ¥~'W¥ = I, we have

d

dt
dw—1 A
{1 R /il
dt + dt
A1 A

v = g !
dt dt
A g1 0¥

dt dt

—(¥7'w) = o0

il /o 1

Now
dw1 7
dt
lIl
L\ ld I)T

SN =

=
= — (¥ 1A\II\I' hHT
—(rtA)”
— _AT(lII_l)T
_ —AT(IIIT)_I

and (¥7)~! is non-singular. Therefore (¥7)~! is a fundamental matrix for the system
x' = -ATx.

4. Write
O =[x x® . x™ ] and By =[y® y@ ...y ],

then {x(1),x® ... xM1} and {yM,y? ... y™} constitute two fundamental sets of so-
lutions to the system. In particular for any i =1,2,--- ,n,

y D = prix® + pyix® + - 4 ppx™), for some constants pii, pai, -+, i



Answers to exercises 171

Now let
P11 P12 -+ Pin
p— P.21 p.22 : p?n ’
Pn1 Pn2 -°* Pnn

we have W9 = ¥ P. The matrix P must be non-singular, otherwise Wy cannot be non-
singular.

Alternative solution: We have

w1, dw;! 1dPs
=L —2 - Oy + O]
dt a T Ty
dw
= o e, 4+ U AD,

dt
= U AT U, UAD,
~UTTAY, + UTTAY,
=0

Therefore \111*1\112 = P is a non-singular constant matrix and the result follows.

Exercise 6.7

1. (a)x:e5t<_11> (d)x:et<2t2_}t_1>
e (p) (1) e (G ) (b))
) x=¢ ( i:ii ) %=1 ( ¢ et “tme )

2. (a) xp(t) =
) 5t =t b
(c) xp(t) = et(ta +Db)

(@) xy(t) = '(ta +b)
e) xp(t) =e'(ta+b)+tc+d
) %p(t)

= t(costa + sintb) + cos tc + sin td
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