THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH1010D&E (2016/17 Term 1) University Mathematics

Jniversity Mathematics Tutorial 8

Indefinite Integral A **primitive** / **anti-derivative** of a continuous function $f:(a,b) \to \mathbb{R}$ is a differentiable function $F:(a,b) \to \mathbb{R}$ such that

$$F'(x) = f(x)$$
 for any $x \in (a, b)$.

Remark: Primitives are not unique: any two primitives of f must differ by a constant. The **indefinite integral** of f is the collection of all primitives of f, denoted by $\int f(x)dx$. We shall write

$$\int \underbrace{f(x)}_{\text{integrand}} dx = \underbrace{F(x)}_{\text{primitive}} + \underbrace{C}_{\text{integration containt}}.$$

Operations on infinite integrals Let $f, g: (a, b) \to \mathbb{R}$ be continuous and $k \in \mathbb{R}$. Then

1)
$$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$$
; and 2) $\int kf(x)dx = k \int f(x)dx$.

Change of variables Let $f:[a,b] \to \mathbb{R}$ be continuous, φ be differentiable and g be continuous such that $f(x) = g(\varphi(x))\varphi'(x)$ for any $x \in (a,b)$. Then

$$\int f(x)dx = \int g(\varphi(x))\varphi'(x)dx = \int g(u)du.$$

Problems that may be demonstrated in class:

Q1. Evaluate $\int f(x)dx$ for different functions f(x) as below:

(a)
$$x\sqrt{x-4}$$
; (b) $\frac{2x-5}{x^2-5x+36}$; (c) $3^{e^x+1}e^x$; (d) $\sin^2 x$;

(e)
$$\sin^3 x$$
; (f) $\tan x$; (g) $\tan^2 x$; (h) $\tan^3 x$;

(i)
$$\sec x$$
; (j) $\frac{1}{\sqrt{x^2+4}}$; (k) $\sin 7x \cos 4x$; (l) $\frac{\arctan x}{x^2+1}$.

- Q2. In this question, we study the behaviour of the indefinite integral $\int \frac{P(x)}{ax^2+bx+c} dx$, where P(x) is a polynomial and $a, b, c \in \mathbb{R}$ with $a \neq 0$.
 - (a) Find the discriminant of the equation $x^2 5x + 6 = 0$. Find real constants A and B such that $\frac{x-5}{x^2-5x+6} \equiv \frac{A}{x-2} + \frac{B}{x-3}$. Hence evaluate $\int \frac{x-5}{x^2-5x+6} dx$.
 - (b) Find the discriminant of the equation $x^2 + 2x + 1 = 0$. Find real constants A and B such that $\frac{3x+2}{x^2+2x+1} \equiv \frac{A}{x+1} + \frac{B}{(x+1)^2}$. Hence evaluate $\int \frac{3x+2}{x^2+2x+1} dx$.
 - (c) Find the discriminant of the equation $x^2 + 2x + 2 = 0$. Evaluate $\int \frac{2x+3}{x^2+2x+2} dx$.
 - (d) Find real constants A, B, C, D such that $\frac{x^3 3x^2 3x + 7}{x^2 5x + 6} \equiv Ax + B + \frac{Cx + D}{x^2 5x + 6}$. Hence evaluate $\int \frac{x^3 3x^2 3x + 7}{x^2 5x + 6} dx$.
- Q3. Let $t = \tan \frac{\theta}{2}$. Express $\sin \theta$ and $\cos \theta$ in terms of t. Evaluate $\int \frac{d\theta}{\sin \theta \cos \theta 1}$.