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Problems that may be demonstrated in class :

Q1. Determine whether the following functions are differentiable at the specified points.
If yes, find the derivatives at those points.

(a) π
8 (1 + x2)

8
π
arctanx at x = 1;

(b) |tanπx arcsinx| at x = 0;

(c) max{ex sinx,−x3} at x = 0.

Q2. Use L’Hopital’s rule to evaluate the following limits.
(a) limx→+∞

x2−6x+2
ex ; (b) limx→0(coshx)cotx; (c) limx→−∞(1 + x2)π/2+arctanx.

Q3. Find dy
dx for the implicit function x2 + y2 = ex

2−y2 .

Q4. Suppose a differentiable function f : R→ R satisfies f(x) = f(x+ 1) for any x ∈ R.

(a) Prove that there exist α, β ∈ R such that

f(α) ≤ f(x) ≤ f(β) for any x ∈ R.

(b) Prove that f ′(x+ 1) = f ′(x) for any x ∈ R.

(c) Let α, β ∈ R and f(α) ≤ f(x) ≤ f(β) for any x ∈ R. Prove that there exists
ξ ∈ R such that f(β)− f(α) ≤ f ′(ξ) ≤ ξ.

Q5. Suppose n ∈ Z+ and a1, ..., an are positive real numbers. Define f : R→ R by

f(x) =


(
ax1+···+axn

n

)1/x
, if x 6= 0;

n
√
a1 · · · an, if x = 0.

(a) Show that f is a continuous at 0.

(b) Show that limx→+∞ f(x) = max{a1, ..., an} and limx→−∞ f(x) = min{a1, ..., an}.
Q6. Let f : R→ R be an injective continuous function, a, b ∈ R, a < b and f(b) ≤ f(a).

(a) Show that f(b) < f(x) < f(a) for any x ∈ (a, b) (Hint: use intermediate value
theorem).

(b) Let f : R→ R be differentiable. Prove that f ′(x) ≤ 0 for any x ∈ (a, b).

Q7. Let f : R→ R be differentiable, f(f(x)) = x for any x ∈ R but f(x) 6≡ x.

(a) Verify that f : R→ R is injective.

(b) Prove that f has a fixed point ξ ∈ R, i.e. f(ξ) = ξ, such that f ′(ξ) = −1.
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Solutions :

Q1. (a) Let f(x) = π
8 (1 + x2)

8
π
arctanx. Then

f(1) =
π

8
(1 + 12)

8
π
arctan 1 =

π

8
· 2

8
π
π
4 =

π

2
,

f ′(x)

f(x)
=

d

dx
(ln f(x)) =

d

dx

(
8

π
arctanx ln(1 + x2) + lnπ − ln 8

)
=

8

π

(
ln(1 + x2)

d

dx
arctanx+ arctanx

d

dx
ln(1 + x2)

)
=

8

π

(
1

1 + x2
ln(1 + x2) +

2x

1 + x2
arctanx

)
,

∴ f ′(x) =
8f(x)

π

(
1

1 + x2
ln(1 + x2) +

2x

1 + x2
arctanx

)
,

f ′(1) =
8

π
· π

2

(
1

2
ln 2 +

π

4

)
= 4

(
1

2
ln 2 +

π

4

)
= π + ln 4.

(b) Let f(x) = |tanπx arcsinx|. When 0 ≤ x < 1/2, tanπx ≥ 0 and arcsinx ≥ 0,
thus f(x) = tanπx arcsinx. When −1/2 < x < 0, tanπx < 0 and arcsinx < 0,
thus f(x) = tanπx arcsinx. Therefore,

f ′(0) =
d

dx
(tanπx arcsinx)

∣∣∣∣
x=0

=

(
π sec2 πx arcsinx+

tanπx√
1− x2

)∣∣∣∣
x=0

= π · 1 · 0 +
0√

1− 02
= 0.

(c) Let f(x) = max{ex sinx,−x3}. When 0 ≤ x ≤ π, ex sinx ≥ 0 ≥ −x3 and thus
f(x) = ex sinx. When −π < x < 0, ex sinx < 0 < −x3 and thus f(x) = −x3.

lim
h→0+

f(h)− f(0)

h
= lim

h→0

eh sinh− 0

h
=

d

dx
ex sinx

∣∣∣∣
x=0

= (ex sinx+ ex cosx)|x=0 = 1,

lim
h→0−

f(h)− f(0)

h
= lim

h→0

−h3 − 0

h
=

d

dx
x3
∣∣∣∣
x=0

= 3x2
∣∣
x=0

= 0 6= 1.

Therefore, f(x) is not differentiable at x = 0.

Q2. (a)

lim
x→+∞

x2 − 6x+ 2

ex
= lim

x→+∞

d
dx(x2 − 6x+ 2)

d
dxe

x
= lim

x→+∞

2x− 6

ex

= lim
x→+∞

d
dx(2x− 6)

d
dxe

x
= lim

x→+∞

2

ex
= 0.

(b)

lim
x→0

cotx ln coshx = lim
x→0

ln coshx

tanx
= lim

x→0

d
dx ln coshx
d
dx tanx

= lim
x→0

1

sec2 x
· sinhx

coshx
= 0,

lim
x→0

(coshx)cotx = lim
x→0

ecotx ln coshx = e0 = 1.
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(c)

lim
x→−∞

(π
2

+ arctanx
)

ln(1 + x2)

= lim
x→−∞

π
2 + arctanx

1
ln(1+x2)

= lim
x→−∞

1
1+x2

−1
(ln(1+x2))2

· 2x
1+x2

= lim
x→−∞

−(ln(1 + x2))2

2x

= lim
x→−∞

−2 ln(1 + x2) · 2x
1+x2

2
= lim

x→−∞

−2 ln(1 + x2)

x+ 1
x

= lim
x→−∞

4x
1+x2

1
x2
− 1

= lim
x→−∞

4x3

1− x4
= lim

x→−∞

4
x

1
x4
− 1

= 0.

Thus, limx→−∞(1 + x2)
π
2 +arctanx = limx→−∞ e

(π
2
+arctanx) ln(1+x2) = e0 = 1.

Q3. Differentiating on both sides,

2x+ 2y
dy

dx
= ex

2−y2
(

2x− 2y
dy

dx

)
,

x+ y
dy

dx
= x(x2 + y2)− y(x2 + y2)

dy

dx
,

y(x2 + y2 + 1)
dy

dx
= x(x2 + y2 − 1),

∴
dy

dx
=
x(x2 + y2 − 1)

y(x2 + y2 + 1)
.

Q4. (a) f is in particular continuous on the closed and bounded interval [0, 1]. By
extreme value theorem, there exist α, β ∈ [0, 1] such that f(α) ≤ f(x) ≤ f(β)
for any x ∈ [0, 1]. Consider any x ∈ R. Let n = bxc, i.e. n be the integral part
of x. Then n ≤ x < n+ 1 and hence 0 ≤ x− n < 1. We have

f(α) ≤ f(x− n) = f(x) ≤ f(β).

(b) Fix x ∈ R. By differentiability of f ,

f ′(x+ 1) = lim
h→0

f(x+ 1 + h)− f(x+ 1)

h
= lim

h→0

f(x+ h)− f(x)

h
= f ′(x).

(c) Let n = bβ−αc and γ = β−n. Then n ≤ β−α < n+1 and thus 0 ≤ γ−α < 1.
By Lagrange’s mean value theorem, there exists η ∈ (α, γ) such that

f ′(η) =
f(γ)− f(α)

γ − α
=
f(β)− f(α)

γ − α
≥ f(β)− f(α).

Define m = bη − f ′(η)c and ξ = η − m. Then m ≤ η − f ′(η) and therefore
f(β)− f(α) ≤ f ′(ξ) = f ′(ξ −m) = f ′(η) ≤ η −m = ξ.

Q5. (a) Let g(x) = ln f(x) and h(x) = x for any x ∈ R. Note that h′(x) = 1 6= 0 for
any x ∈ R, limx→0[ln(ax1 + · · ·+ axn)− lnn] = limx→0 h(x) = 0, and

lim
x→0

d
dx(ln(ax1 + · · ·+ axn)− lnn)

dx
dx

= lim
x→0

ax1 ln a1 + · · ·+ axn ln an
ax1 + · · ·+ axn

=
ln a1 + · · ·+ ln an

n
= ln n

√
a1 · · · an = ln f(0).
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By L’Hopital’s rule,

lim
x→0

g(x) = lim
x→0

ln(ax1 + · · ·+ axn)− lnn

x
= ln f(0).

We know that the exponential function R→ R given by x 7→ ex is continuous.
Therefore, f : R→ R is continuous at 0 since

lim
x→0

f(x) = lim
x→0

eg(x) = eln f(0) = f(0).

(b) Without loss of generality, assume a1 ≤ · · · ≤ an. For any x > 0,

axn
n
<
ax1 + · · ·+ axn

n
≤ naxn

n
= axn and thus

an
x
√
n
< f(x) ≤ an.

Because limx→+∞
an
x√n = an, by Sandwich theorem, limx→+∞ f(x) = an.

On the other hand, for any x < 0,

ax1
n
<
ax1 + · · ·+ axn

n
≤ nax1

n
= ax1 and thus a1 ≤ f(x) <

a1
x
√
n
.

Because limx→−∞
a1
x√n = a1, by Sandwich theorem, limx→−∞ f(x) = a1.

Q6. (a) Fix x ∈ (a, b). We claim f(x) ≤ f(a). Assume the contrary that f(x) > f(a).
Define c = 1

2(f(a) + f(x)). Then f(b) ≤ f(a) < c < f(x) and by intermediate
value theorem, ∃ξ0 ∈ (a, x) and ξ1 ∈ (x, b) such that f(ξ0) = f(ξ1) = c. But this
violates injectivity of f . Thus, f(x) ≤ f(a). By injectivity of f , f(x) < f(a).
Define g(y) = −f(−y) for any y ∈ R. Suppose y, z ∈ R and g(y) = g(z).
Then f(−y) = −g(y) = −g(z) = f(−z). By injectivity of f , −y = −z, whence
y = z. Then g : R → R is injective. Now we have −b < −x < −a and
g(−a) = −f(a) < −f(b) = g(−b). Applying the previous argument, we have
g(−x) < g(−b) and hence f(b) = −g(−b) < −g(−x) < f(x).

(b) Consider any x, y ∈ (a, b) with x < y. f(b) < f(x) by (a). Since x < y < b,
applying (a) again, f(y) < f(x). Therefore, f is strictly decreasing on (a, b).
We can conclude that f ′(x) ≤ 0 for any x ∈ (a, b).

Q7. (a) If x, y ∈ R and f(x) = f(y), then x = f(f(x)) = f(f(y)) = y. f is injective.

(b) Because f is not the identity function, there exists x0 ∈ R such that f(x0) 6= x0.
Let a = min{x0, f(x0)} and b = max{x0, f(x0)}. Then f(b) = a < b = f(a).
Define a continuous function g(x) = f(x) − x for any x ∈ R. We check that
g(a) = f(a)− a = b− a > 0 and g(b) = f(b)− b = a− b < 0. By intermediate
value theorem, ∃ξ ∈ (a, b) such that f(ξ)− ξ = g(ξ) = 0, whence f(ξ) = ξ. ξ is
a fixed point of f . By (a) and Q6(b), f ′(ξ) ≤ 0. By chain rule,

[f ′(ξ)]2 = f ′(f(ξ))f ′(ξ) = (f ◦ f)′(ξ) =
dx

dx

∣∣∣∣
x=ξ

= 1.

Therefore, f ′(ξ) = −1.
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