
Series

Week 8
Taylor Series
Indefinite Integrals
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Theorem.

Generalized Binomial Theorem For  such that , we
have:

where .

Example.

Find the Taylor series of  at .
Applying the Generalized Binonomial Theorem to , where 

 and , we have:

for . This is a power series centered at , hence it is the
Taylor series of  at .

It is sometimes useful to use Taylor series to find limits which involve
indeterminate forms.

Example.

Indefinite Integrals
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Definition.

If , we say that  is an antiderivative of .

If two functions  and  are both antiderivatives of  over , then 
, hence:

By a corollary of the mean value theorem, this implies that  is a
constant function on . That is, there exists , such that 

 for all .
Put differently, if  is an antiderivative of  over , then any
antiderivative of  over  has the form  for some constant
function .

Definition.

The collection of all antiderivatives of a function  is called the
indefinite integral of , denoted by:

We call  the integrand of .

If , we write:

where  denotes some arbitrary constant.
>

Example.

Since , we write:

Note that  is also an antiderivative of , hence it is equally
valid to write:

Some Properties of Indefinite Integrals

F ′ = f F f

F G f (a, b)

F ′ = G′ = f

(F − G)′ = F ′ − G′ = 0.

F − G

(a, b) C ∈ R

(F − G)(x) = C x ∈ (a, b)

F f (a, b)

f (a, b) F + C

C

f

f

∫ f(x) dx.

f(x) ∫ f(x) dx

F ′ = f

∫ f(x)dx = F + C,

C

x2 = 2xd

dx

∫ 2xdx = x2 + C.

x2 + 17 2x

∫ 2xdx = x2 + 17 + C.



Some Properties of Indefinite Integrals
, where  is some constant.

For , we have . In particular,

For , we have:

 

(This identity is not quite true. Will explain later.)

For any functions ,  with antiderivatives , , respectively, we
have:

For , and any function  with antiderivative , we have: 

Observe that for any , and differentiable function , by the
chain rule we have:

Hence, in general we have:

where  is an antiderivative of , and  is some constant.

∫ 0 dx = C C

k ∈ R ∫ k dx = kx + C

∫ dx = ∫ 1 dx = x + C.

k ∈ R {−1}

∫ xk dx = + C.
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∫ dx = ln|x| + C.
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∫ ex dx = ex + C.

∫ cosx dx = sinx + C.

∫ sinx dx = − cosx + C.

∫ sec2 x dx = tanx + C.

∫ secx tanx dx = secx + C.

∫ dx = arctanx + C.
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>

Example.

>

Example.

>

Example.

Similarly, it may be shown that:

Integration by Substitution
Theorem.

If , and  is a differentiable function, then:

∫ sin(5x + π/4) dx = cos(5x + π/4) + C.
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∫ cos2(x) dx = − sin(2x) + C
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F ′ = f g

∫ f(g(x))g′(x) dx = F(g(x)) + C.



Proof.

>
This is just the Chain Rule in reverse, since:

>

In Leibniz Notation, the theorem may be formulaed as follows:

Let , then , and:

Example.

Evaluate:

Integration by Parts
Let  be differentiable functions. Recall the Product Rule:

Take the indefinite integral (with respect to ) of both sides of the
above equation, we have:

F(g(x)) = F ′(g(x))g′(x) = f(g(x))g′(x).
d

dx

u = g(x) = g′(x)
du

dx

∫ f(g(x))g′(x) dx = ∫ f(u) dx

= ∫ f(u) du = F(u) + C = F(g(x)) + C.

du

dx

∫ x2ex
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t
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∫ tanx dx

∫ dx
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d
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which implies that:

Hence,

Example.

Evaluate:

∫ d(uv) = ∫ v du + ∫ u dv.

∫ u dv = (uv) − ∫ v du

∫ xe3x dx

∫ x2ex dx

∫ x5ex dx

∫ x5 sinx dx

∫ lnx dx

∫ ex sinx dx


