Week 7 Taylor Series

Definition.

Given a function f which is infinitely differentiable at a (i.e. $f^{(k)}(a)$ is defined for k = 0, 1, 2, 3, ...). The **Taylor series of** f (centered) at a is the power series:

$$T(x) = \sum_{k=0}^{\infty} rac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + rac{f''(a)}{2!} (x-a)^2 + \dots + rac{f^{(k)}(a)}{k!} (x-a)^k + \dots$$

>

In general, for any power series of the form $S(x) = \sum_{k=0}^{\infty} a_k (x-a)^k$, the value of S at any given $c \in \mathbb{R}$ is by definition the limit:

$$S(c):=\lim_{n o\infty}\sum_{k=0}^n a_k(c-a)^k.$$

Note that this limit does not necessarily exist. If it does exist, we say that the power series *S* converges at x = c, otherwise we say that it **diverges** at x = c.

Example.		
The Taylor series at $a = 0$ for various functions f are as follows:		
f(x)	P(x)	
$\cos x$	$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$	
$\sin x$	$\sum_{k=0}^{\infty} (-1)^k rac{x^{2k+1}}{(2k+1)!}$	
e^x	$\sum_{k=0}^{\infty}rac{x^k}{k!}$	
$\ln(1+x)$	$\sum_{k=1}^\infty (-1)^{k+1} \frac{x^k}{k}$	
$\arctan x$	$\sum_{k=0}^{\infty} (-1)^k rac{x^{2k+1}}{2k+1}$	
$\frac{1}{1-x}$	$\sum_{k=0}^\infty x^k$	

Example.

The Taylor T(x) series of $f(x) = e^x$ at a = 0 converges everywhere. Moreover, for each $x \in \mathbb{R}$, we do have:

$$T(x)=\sum_{k=0}^\infty rac{1}{k!}\;x^k=e^x.$$

Similarly, for all $x \in \mathbb{R}$, we have:

$$\sum_{k=0}^{\infty} rac{(-1)^k}{(2k+1)!} \; x^{2k+1} = \sin x$$
 $\sum_{k=0}^{\infty} rac{(-1)^k}{(2k)!} \; x^{2k} = \cos x$

However,

>

The Taylor series of $f(x) = \ln(1+x)$ at a = 0 is:

$$T(x) = \sum_{k=1}^\infty rac{(-1)^{k+1}}{k} \; x^k,$$

which converges only for $x \in (-1, 1]$. For such x we do have:

$$T(x) = f(x).$$

>

In particular, we have:

$$\ln 2 = \ln(1+1) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \ 1^k = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

Remark.

>

There are functions whose Taylor series converge everywhere, but not to the functions themselves.

Shortcuts for Computing Taylor Series

Theorem. Let $S(x) = \sum_{k=0}^{\infty} a_k (x-a)^k$ be a power series which converges on an open interval of the form (a-r, a+r), r > 0, then the function S(x) is differentiable on (a-r, a+r), with $S'(x) = \sum_{k=0}^{\infty} k a_k (x-a)^{k-1}$ for all $x \in (a-r, a+r)$.

Applying this theorem repeatedly, it may be shown that S(x) is in fact infinitely differentiable on (a - r, a + r), and its Taylor series at x = a is itself. That is:

$$rac{S^{(k)}(a)}{k!} = a_k, \quad k = 0, 1, 2, \dots$$

Put differently:

Corollary.

Let f be a function. If there is a sequence $\{a_k\}_{k=0}^\infty$ such that:

$$f(x)=\sum_{k=0}^\infty a_k(x-a)^k$$

for all x in some open interval centered at a, then $\sum_{k=0}^{\infty} a_k (x-a)^k$ is the Taylor series of f at x = a, with $a_k = \frac{f^{(k)}(a)}{k!}$.

Corollary.

lf:

$$\sum_{k=0}^\infty a_k (x-a)^k = \sum_{k=0}^\infty b_k (x-a)^k$$

for all x in some open interval centered at a, then $a_k = b_k$ for all k.

Exercise.		
Find the Taylor series of f at the given point a .		
f(x)	a	
$\sin(5x)$	0	
$x^3 \cos x$	0	
$\sin(x-\pi)$	π	
$\ln x$	1	
$\frac{1}{2-x}$	0	
$rac{1}{1+x}$	0	
$rac{1}{1+x^2}$	0	
$\arctan x$	0	
$\frac{x+1}{x^2+x+1}$	0	