
Higher Order Derivatives
Let  be a function.

+

Its derivative  is often called the first derivative of .

+

The derivative of , denoted by , is called the second
derivative of .

+

If  exists, we say that  is twice differentiable at .

+

For , the ‑th derivative of , denoted by  is defined
as the derivative of the ‑st derivative of .

+

If  exists, we say that  is  times differentiable at .

+

We sometimes consider  to be the "zero"‑th derivative of
itself, i.e. .

+

In the Leibniz notation, we have:

which is customarily written as:
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Exercise.
Let:

Find , if it exists.

Theorem.
General Leibniz Rule. Let . Given any functions 
which are  times differentiable at , their product  is
also  times differentiable at , with:

Notice that when  this rule is simply the product rule
we have introduced before.

The Mean Value Theorem
Theorem.
Rolle's Theorem Let  be a function which is
continuous on  and differentiable on  (i.e. 
exists for all ). If , then there exists 

 such that .

Proof.
>

Sketch of Proof. First, it follows from the Extreme Value
Theorem that  has an absolute maximum or minimum at a
point  in . It may then be shown that:

using that fact that if  is an absolute extremum, then 

 is both  and . 

◼

f(x) = { x4 sin( )  if x ≠ 0;
0  if x = 0.
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Theorem.
The Mean Value Theorem (MVT). If a function 

 is continuous on  and differentiable on 
, then there exists  such that:

Proof.
>

Let  be a function which satisfies the conditions of the
theorem. Define a function  as follows:

(Intuitively,  is obtained from  by subtracting from  the
line segment joining  and .) Observe that:

so the function  satisfies the conditions of Rolle's
Theorem. Hence, there exists  such that:

which implies that . 

◼

Exercise.
Using the mean value theorem to prove that for ,

Hence, deduce that for ,

Applications of the Mean Value Theorem

f : [a, b] ⟶ R [a, b]
(a, b) c ∈ (a, b)
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f
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Theorem.
Let  be a differentiable function on an open interval .

If  for all , then  is constant .

Proof.
>

Exercise. For any , show that the difference 
 is equal to . 

◼

Theorem.
Let  be a differentiable function on an open interval .

If  (resp. ) for all , then  is
increasing (resp. decreasing) on .

Proof.
>

We will prove the case . 
Suppose  for all . Given any ,

such that , by the MVT there exists  such
that

By the condition  for all , we have 
. Also, . Hence, . This shows
that  is increasing on . 

◼

Corollary.
First Derivative Test Let  be a continuous
function. For , if there exists an open interval 
containing  such that  (in particular it exists) for
all , and  for all , then  has a local
minimum at . Similarly, if  for all  and 

 for all , then  has a local maximum at .
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f ′(x) < 0 x ∈ (c, b) f c



>

Note: In the special case that the domain of  is an open
interval , if  for all , and  for all

, then  has an absolute maximum at . 
Similarly  has an absolute minimum at  if each of the above
inequalities is reversed.

Exercise.

 for . Show that  for all 

. Then, deduce that:

for , .

Theorem.
Second Derivative Test Let  be a function twice
differentiable at , such that . If:

, then  has a local minimum at .
, then  has a local maximum at .

Proof.
>

Sketch of Proof. Suppose , by the definition of 
 as the derivative of  at , we have:

It follows from the above identity that  is  for
sufficiently small positive , and  for sufficiently small
negative . 
>

Hence there is an open interval  containing  such that
 is negative on  and positive on . So,  has a

local minimum at  by the First Derivative Test. 
>

The case  may be proved similarly. 
◼
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Theorem.
Cauchy's Mean Value Theorem. If  are
functions which are continuous on  and differentiable
on , and , then there exists  such
that:

Proof.
>

Exercise. Apply Rolle's Theorem to:

Theorem.
L'Hôpital's Rule. Let . Let  be an open
interval containing . Let  be functions which are
differentiable at every point in . Suppose:

 and  are both equal to  or both equal

to .

 for all .

 exists.

Then,

f, g : [a, b] ⟶ R
[a, b]

(a, b) g(a) ≠ g(b) c ∈ (a, b)
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c f, g
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lim
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f(x) lim
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g(x) 0

±∞
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Exercise.
Use l'Hôpital's rule to evaluate the following limits:

1. 

2. 

3. 

4. 

lim
x→0

1 − x cot x

x sin x

lim
x→0+

x
1

1+ln x

lim
x→+∞

x ( − tan−1 x)π

2

lim
x→+∞

(ex + x)
1
x


