Week 4 Differentiation

Derivatives

Definition.

We say that a function f is **differentiable** at c if the limit:

$$f'(c):=\lim_{h
ightarrow 0}rac{f(c+h)-f(c)}{h}$$

exists. The limit f'(c), if it exists, is called the **derivative** of f at c.

+

We say that a function f is **differentiable** if it is differentiable at every point in its domain.

Exercise.

Let f(x) = |x|. Is f differentiable at x = 0? If so, find f'(0).

Theorem.

If a function f is differentiable at c, then it is also continuous at c. (The converse is false in general.)

Exercise.

Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined by

Suppose f(x) differentiable at x = 1, find the values of a and b.

Tangent Line

If the derivative f'(c), if it exists, then there exists a tangent line to the graph y = f(x) of f at (c, f(c)).

Moreover, the slope of the tangent line is f'(c), and the tangent line is the graph of the equation:

$$y = f'(c)(x - c) + f(c).$$

Given $f: A \longrightarrow \mathbb{R}$, the correspondence $x \mapsto f'(x)$ defines the **derivative function** $f': A' \longrightarrow \mathbb{R}$, where A' is the set of all points $c \in A$ at which f is differentiable.

f(x)	f'(x)
constant	0
$ax+b (a,b\in \mathbb{R})$	a
$x^n (n \in \mathbb{Z}, \; n eq 0, 1)$	nx^{n-1}
$x^r (r\in \mathbb{R}, \ n eq 0,1; \ x>0)$	rx^{r-1}
e^x	e^x
$\ln x$	$\frac{1}{x}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec^2 x$
sec x	$\sec x \tan x$
$\cot x$	$-\csc^2 x$
$\csc x$	$-\csc x \cot x$
$\arctan x$	$rac{1}{x^2+1}$
$\arcsin x (-1 < x < 1)$	$\frac{1}{\sqrt{1-x^2}}$

Some Common Derivative Identities:

Leibniz Notation

If f is defined in terms of an independent variable x, we often denote f'(x) by $\frac{df}{dx}$. Under this notation, for a given $c \in \mathbb{R}$ the value f'(c) is denoted by:

Rules of Differentiation

Let f, g be functions differentiable at $c\in\mathbb{R}.$ Then:

Sum/Difference Rule

 $f \pm g$ is differentiable at c, with:

$$(f \pm g)'(c) = f'(c) \pm g'(c).$$

 $\frac{df}{dx}\Big|_{x=c}$

+

+

Product Rule

fg is differentiable at c_i , with:

$$(fg)'(c) = f'(c)g(c) + f(c)g'(c).$$

+

Quotient Rule

f/g is differentiable at c provided that $g(c) \neq 0$, in which case we have:

$$\left(rac{f}{g}
ight)'(c) = rac{g(c)f'(c) - f(c)g'(c)}{[g(c)]^2}$$

Chain Rule

Theorem.

Suppose f is differentiable at c and g is differentiable at f(c), then $g \circ f$ is differentiable at c, with:

$$(g\circ f)'(c)=g'(f(c))f'(c).$$

+

In the Leibniz notation, the chain rule says that if f is a differentiable function of u and u is a differentiable function of x, then:

$$egin{aligned} &rac{df}{dx} = rac{df}{du}rac{du}{dx},\ &rac{df}{dx}\Big|_{x=c} = rac{df}{du}\Big|_{u=u(c)}rac{du}{dx}\Big|_{x=c} \end{aligned}$$

Exercise.

Let $f:\mathbb{R} \to \mathbb{R}$ be the function defined by

$$f(x)=egin{cases} x^2\sinig(rac{1}{x}ig) & ext{if} & x
eq 0;\ 0 & ext{if} x=0. \end{cases}$$

Find f'. Is f' continuous at x = 0?

Implicit Differentiation

Example.

For x > 0,

$$\frac{d}{dx}\ln x = \frac{1}{x}.$$

Proof.

+

Consider the equation:

 $e^{\ln x} = x$

Differentiating both sides with respect to x, and applying the Chain Rule, we have:

$$rac{d}{dx}e^{\ln x}=rac{d}{dx}x$$
 $e^{\ln x}_{=x}rac{d}{dx}\ln x=1$

Hence, $\frac{d}{dx} \ln x = \frac{1}{x}$.

Exercise.

Consider the curve $C: y^4 - y\cos(x) - x^4 = 0$. 1. Find $\frac{dy}{dx}$. Express your answer in terms of x, y only. 2. Let $P = \left(\frac{\pi}{2}, -\frac{\pi}{2}\right)$. • Verify that the point P lies on the curve C. • Find the equation of the normal to the curve C at the point P.

Theorem.

Let f be an injective function differentiable at x = c. If $f'(c) \neq 0$, then f^{-1} is differentiable at f(c), with:

$$ig(f^{-1}ig)'(f(c)) = rac{1}{f'(c)}.$$

Example.

Consider the injective function:

$$f: [-\pi/2,\pi/2] \longrightarrow \mathbb{R},$$
 $f(x) = \sin x, \quad x \in [-\pi/2,\pi/2].$

Then, $f'(x) = \cos x$ for $x \in (-\pi/2, \pi/2)$. In particular, f' is nonzero on $(-\pi/2, \pi/2)$. The inverse of f is:

 $f^{-1} = rcsin: [-1,1] \longrightarrow [-\pi/2,\pi/2].$

For any $y \in (-1,1)$, we have $y = f(x) = \sin(x)$ for a unique $x = \arcsin y$ in $(-\pi/2, \pi/2)$. Hence,

$$\arcsin' y = (f^{-1})'(y) = (f^{-1})'(f(x)) = \frac{1}{f'(x)} = \frac{1}{\cos x}.$$

By the Pythagorean Theorem, we know that:

$$\cos x = \pm \sqrt{1 - \sin^2 x} \; .$$

Moreover, since $x\in(-\pi/2,\pi/2)$, we have $\cos x>0$, so:

$$\cos x = +\sqrt{1-\sin^2 x} = \sqrt{1-\sin^2(\arcsin(y))} = \sqrt{1-y^2}.$$

In conclusion, for $y \in (-1, 1)$, we have:

$$\arcsin' y = rac{1}{\sqrt{1-y^2}}.$$