
Recall:

Theorem.

Let  be a power series which converges on

an open interval of the form , , then the
function  is differentiable on , with:

for all .

The theorem just cited works "in reverse", namely:

Theorem.

Let  be a power series which converges on an

open interval of the form , . Then, the power
series:

also converges on , and:

over , where  is an arbitrary constant. For 
, we have:
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Example.

The function:

is a differentiable function, but it has been proved that it is not an
elementary function.
To describe  more explicitly, one can first consider the Taylor
series of  about :

which converges to  for all .

Using the theorem just stated, we see that:

Example.

Given that  for all , find the Taylor series of 

 about .
>

Notice that  is an antiderivative of . Since:

for all . we have:

for all , for some constant . Substituting  into
both sides of the above equation, we have:

Hence, the Taylor series of  about  is:
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Example.

For each of the following functions , find  for all 

. Then find .

A few words on ‑substitution
Evaluate:

>
Let:

Then,
>

Moreover,
>

by the double‑angle formula for the sine function, we have:

>
Similarly, by the double‑angle formula for the cosine function, we
have:

f F(x) := ∫ x

0

f(t) dt

x ∈ R F ′(x)

f(x) = { 1 − x2, x ≤ 1;
x − 1, x > 1.

f(x) = {x2, x ≤ 1;
x, x > 1.

t

∫ dx
1

1 + 2 cosx

t = tan .
x

2

x = 2 arctan t,

dx = dt
2

1 + t2

sinx = 2 sin cos

= 2 cos2

=

=

x

2

x

2
sin x

2

cos x

2

x

2

2 tan x

2

sec2 x

2

2t

1 + t2

x



>
We have:

where  is an arbitrary constant.

Improper Integral (Extracurricular Topic)
For a continuous function  defined on  (where  can be ), we
let:

Similarly, for a continuous function  defined on  (where  can be 
), we let:
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If a function  is continuous on  except at a point , we
define:

Note that the integrals on the right may themselves be improper

integrals. We say that  is convergent if both integrals on the

right are convergent.

Example.

For a continuous function  on , where  can be  and  can be 
, we fix any point  and define:

We say that the integral is convergent if both limits are convergent.

Note that if both limits converge for one choice of , then they both
converge for any other choice of . Hence, this definition of
convergence is independent of the choice of .
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