Differentiability

If a function $f(x, y)$ in two variables is differentiable at (a, b) , then geometrically it means that there exists a tangent plane to the graph $z = f(x,y)$ of f at the point $(a,b, f(a,b))$ on the graph. An equation which describes this tangent plane is:

$$
z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b),
$$

or equivalently:

$$
-f_x(a,b)(x-a) - f_y(a,b)(y-b) + (z - f(a,b)) = 0.
$$

Hence, this is the plane in \mathbb{R}^3 which contains the point $(a, b, f(a, b)),$ and has $\vec{n} = \langle -f_x(a, b), -f_y(a, b), 1\rangle$ as a normal vector.

Let $f(x, y)$ be a function in 2 variables. The existence of $f_x(a, b)$ and $f_y(a, b)$ does *not* guarantee the differentiability of f at (a, b) . However,

Theorem.

If f_x and f_y are continuous on an open region containing (a, b) , then f is differentiable at (a, b) .

Theorem.

If f is differentiable at P , then it is continuous at P .

Higher Order Partial Derivatives

Since, $\frac{\partial f}{\partial x}$ is itself a function in *n* variables, we can consider its partial derivative with respect to any of the variables $x_j.$ And we can further consider partial derivatives of that partial derivative, and so on. The notation is as follows: $\frac{\partial f}{\partial x_i}$ is itself a function in n '

$$
\frac{\partial^2 f}{\partial x_i^2} = f_{x_ix_i} := \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right).
$$

For $j \neq i$,

$$
\frac{\partial^2 f}{\partial x_j \partial x_i} = f_{x_ix_j} := \frac{\partial}{\partial x_j} \bigg(\frac{\partial f}{\partial x_i} \bigg) \, .
$$

For $m \in \mathbb{N}$,

$$
m\in\mathbb{N},
$$

$$
\frac{\partial^m f}{\partial x_i^m}=f_{\underbrace{x_ix_i\cdots x_i}_{m\text{ times}}}:=\frac{\partial}{\partial x_i}\Bigg(\frac{\partial^{m-1}f}{\partial x_i^{m-1}}\Bigg)
$$

For $i_1, i_2, \ldots, i_m \in \{1, 2, 3, \ldots, n\}$

$$
\frac{\partial^m f}{\partial x_{i_m} \partial x_{i_{m-1}} \partial x_{i_{m-2}} \cdots \partial x_{i_1}} = f_{x_{i_i} x_{i_2} \cdots x_{i_m}} := \frac{\partial}{\partial x_{i_m}} \left(\frac{\partial^{m-1} f}{\partial x_{i_{m-1}} \partial x_{i_{m-2}} \cdots \partial x_{i_1}} \right).
$$

Theorem.

Let x and y be two of the variables of a function $f.$ If f_{xy} and f_{yx} are continuous on an open region containing a point $P_\mathcal{H}$ then:

$$
f_{xy}(P) = f_{yx}(P).
$$

Chain Rule

Theorem. If $f(x_1, x_2, ..., x_n)$ is a differentiable function in n variables, and each $x_i = x_i(s_1, s_2, \ldots, s_m)$ $(i = 1, 2, \ldots, n)$ is a differentiable function in m variables, then f is differentiable as a function in s_1, s_2, \ldots, s_m , with:

$$
\frac{\partial f}{\partial s_i} = \sum_{j=1}^n \frac{\partial f}{\partial x_j} \frac{\partial x_j}{\partial s_i}.
$$

Definition.

The gradient of $f(x_1, x_2, \ldots, x_n)$ at $P \in \mathbb{R}^n$ is:

$$
\nabla f(P) = \langle f_{x_1}(P), f_{x_2}(P), \ldots, f_{x_n}(P) \rangle \in \mathbb{R}^n
$$

Hence,

$$
\frac{\partial f}{\partial s_i} = \nabla f \cdot \frac{\partial \vec{x}}{\partial s_i},
$$

where:

$$
\frac{\partial \vec{x}}{\partial s_i} := \left\langle \frac{\partial x_1}{\partial s_i}, \frac{\partial x_2}{\partial s_i}, \dots, \frac{\partial x_n}{\partial s_i} \right\rangle.
$$