Week 7 Function in n variables

Functions in n Variables

Given $n\in\mathbb{N}.$ A real-valued function f in n variables is a map:

 $f: D \longrightarrow \mathbb{R},$

where the domain D is a subset of $\mathbb{R}^n.$

Example. [>](#page-0-0) $f: \{(x,y)\in \mathbb{R}^2\mid x^2+y^2>0\}\longrightarrow \mathbb{R}$ $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}.$

[>](#page-0-1)

If the domain D of f is not explicitly given, it is assumed to be the natural domain (or: maximal domain, domain of definition) of f. Namely, it is the set of all points in \mathbb{R}^n on which the expression defining f is well-defined.

Regions in \mathbb{R}^n .

Let D be a region/subset of $\mathbb{R}^n.$ A point $P_0 \in \mathbb{R}^n$ is said to be an interior point of D if there exists an open disc/ball $B_r(P_0)$ of nonzero radius r , centered at P_0 , such that $B_r(P_0)\subseteq D.$ Here,

$$
B_r(P_0)=\left\{P\in\mathbb{R}^n\;:\;\left|\overrightarrow{P_0P}\right|
$$

In particular, an interior point of D must lie in D . A point $P_0 \in \mathbb{R}^n$ is said to be a **boundary point** of D if, for all $r > 0$, the open ball $B_r(x_0, y_0)$ has nonempty intersection with both D and $\mathbb{R}^n \backslash D := \{P \in \mathbb{R}^n : P \notin D\}$ The **boundary** ∂D of a region D is the set consisting of its boundary points. The **interior** of a region D is the set consisting of its interiors points. A region D is said to be $\mathop{\mathsf{open}}$ if every point of D is an interior point. It is said to be **closed** if it contains its boundary.

Example.

 \mathbf{R} The region:

$$
D=\{(x,y)\ | \ x^2+y^2<4\}\subseteq \mathbb{R}^2
$$

is open, with boundary:

$$
\partial D=\{(x,y)\mid x^2+y^2=4\}
$$

[>](#page-1-1)

The region:

$$
D = \{(x, y) \mid y \leq x^2\} \subseteq \mathbb{R}^2
$$

is closed, for it contains its boundary:

$$
\partial D = \{(x, y) \mid y = x^2\}
$$

[>](#page-1-2)

Let:

$$
D=\{(x,y)\mid\,-1\leq y<1\}\subseteq\mathbb{R}^2
$$

The boundary of D is:

$$
\partial D = \{(x, y) \mid y = \pm 1\}.
$$

Since some points of the boundary (e.g. $(x, y) = (5, -1)$) belong to D, but others (e.g. $(x, y) = (4, 1)$) do not, the region D is neither open nor closed.

For a function in two variables, $f: D \longrightarrow \mathbb{R}, \, D \subseteq \mathbb{R}^2,$ the \rm graph of f is the set of points $(x, y, z) \in \mathbb{R}^{2+1} = \mathbb{R}^3$ such that:

$$
z=f(x,y),\quad (x,y)\in D.
$$

(We often write $z = f(x, y)$ to denote the graph of a function f in two variables.)

Level Sets

Definition.

For a function $f: D \longrightarrow \mathbb{R}, D \subseteq \mathbb{R}^n$, in *n* variables, and $c \in \mathbb{R}$, the **level set** of *f* corresponding to *c* is the set of points the level set of f corresponding to c is the set of points $(x_1, x_2, \ldots, x_n) \in D$ such that

 $f(x_1, x_2, \ldots, x_n) = c$

[>](#page-2-0)

Remark.

If $n = 2$, then a level set of f is typically a curve in the xy plane, and is often called a level curve.

If $n = 3$, then a level set is typically a surface in the xyz space, and is often called a level surface.

Example.

 $f(x, y) = x^2 + y^2.$

- For $c = -2, -1$, the level sets $f(x, y) = x^2 + y^2 = c$ are empty.
- For $c = 0$, the level set $f(x, y) = x^2 + y^2 = 0$ consists of the single point $(0, 0)$.
- For $c > 0$, the level set $f(x, y) = x^2 + y^2 = c$ is the circle in \mathbb{R}^2 centred at the origin with radius $\sqrt{c}.$

Each level set $f(x, y) = c$ corresponds to (the projection onto the xy -plane of) the intersection of the surface $z = f(x, y)$ and the horizontal (hence ``level'') plane $z = c$: [>](#page-3-1)

