Week 7 Function in n variables

Functions in n Variables

Given $n \in \mathbb{N}$. A real-valued function f in n variables is a map:

 $f: D \longrightarrow \mathbb{R},$

where the domain D is a subset of \mathbb{R}^n .

Example. > $f:\{(x,y)\in \mathbb{R}^2\mid x^2+y^2>0\}\longrightarrow \mathbb{R}$ $f(x,y)=rac{1}{\sqrt{x^2+y^2}}.$

>

If the domain D of f is not explicitly given, it is assumed to be the natural domain (or: maximal domain, domain of definition) of f. Namely, it is the set of all points in \mathbb{R}^n on which the expression defining f is well-defined.

Regions in \mathbb{R}^n

Let *D* be a region/subset of \mathbb{R}^n . A point $P_0 \in \mathbb{R}^n$ is said to be an **interior point** of *D* if there exists an open disc/ball $B_r(P_0)$ of nonzero radius *r*, centered at P_0 , such that $B_r(P_0) \subseteq D$. Here,

$$B_r(P_0) = \left\{ P \in \mathbb{R}^n \; : \; \left| \overrightarrow{P_0 P}
ight| < r
ight\}.$$

In particular, an interior point of D must lie in D. A point $P_0 \in \mathbb{R}^n$ is said to be a **boundary point** of D if, for all r > 0, the open ball $B_r(x_0, y_0)$ has nonempty intersection with both D and $\mathbb{R}^n \setminus D := \{P \in \mathbb{R}^n : P \notin D\}$ The **boundary** ∂D of a region D is the set consisting of its boundary points. The **interior** of a region D is the set consisting of its interiors points. A region D is said to be **open** if every point of D is an interior point. It is said to be **closed** if it contains its boundary.

Example.

>

The region:

$$D=\{(x,y)\mid x^2+y^2<4\}\subseteq \mathbb{R}^2$$

is open, with boundary:

$$\partial D = \{(x,y) \mid x^2+y^2=4\}$$

>

The region:

$$D=\{(x,y)\mid y\leq x^2\}\subseteq \mathbb{R}^2$$

is closed, for it contains its boundary:

$$\partial D = \{(x, y) \mid y = x^2\}$$

>

Let:

$$D=\{(x,y)\mid -1\leq y<1\}\subseteq \mathbb{R}^2$$

The boundary of *D* is:

$$\partial D = \{(x, y) \mid y = \pm 1\}.$$

Since some points of the boundary (e.g. (x, y) = (5, -1)) belong to D, but others (e.g. (x, y) = (4, 1)) do not, the region D is neither open nor closed.

For a function in two variables, $f: D \longrightarrow \mathbb{R}$, $D \subseteq \mathbb{R}^2$, the **graph** of *f* is the set of points $(x, y, z) \in \mathbb{R}^{2+1} = \mathbb{R}^3$ such that:

$$z=f(x,y), \quad (x,y)\in D_{x}$$

(We often write z = f(x, y) to denote the graph of a function f in two variables.)

Level Sets

Definition.

For a function $f: D \longrightarrow \mathbb{R}$, $D \subseteq \mathbb{R}^n$, in *n* variables, and $c \in \mathbb{R}$, the **level set** of *f* corresponding to *c* is the set of points $(x_1, x_2, \ldots, x_n) \in D$ such that

 $f(x_1,x_2,\ldots,x_n)=c$

>

Remark.

If n = 2, then a level set of f is typically a curve in the xy-plane, and is often called a **level curve**.

If n = 3, then a level set is typically a surface in the *xyz*-space, and is often called a **level surface**.

Example.

 $f(x,y) = x^2 + y^2.$

- For c = -2, -1, the level sets $f(x, y) = x^2 + y^2 = c$ are empty.
- For c = 0, the level set $f(x, y) = x^2 + y^2 = 0$ consists of the single point (0, 0).
- For c > 0, the level set f(x, y) = x² + y² = c is the circle in ℝ² centred at the origin with radius √c.

Each level set f(x,y) = c corresponds to (the projection onto the xy-plane of) the intersection of the surface z = f(x,y) and the horizontal (hence ``level'') plane z = c:

