Cross Product

Given a plane containing the origin which is the linear span of \vec{v} , \vec{w} , we want to find a normal vector \vec{n} perpendicular to it. To do so, observe that:

v_1	v_2	v_3		$ w_1 $	w_2	w_3	
v_1	v_2	v_3	=	v_1	v_2	v_3	=0,
$ w_1 $	w_2	w_3		$ w_1 $	w_2	w_3	

for both expressions are determinants of matrices with repeated rows. By the definition of the cofactor expansion along the first row, we have:

$$egin{aligned} & \langle v_1, v_2, v_3
angle \cdot \left\langle igg| egin{aligned} & v_2 & v_3 \ & w_2 & w_3 \end{array} igg|, - igg| igwingle v_1 & v_3 \ & w_1 & w_3 \end{array} igg|, igg| inom{v_1 & v_2 \ & w_1 & w_2 \end{array} igg|
ight
angle = 0 \ & \langle w_1, w_2, w_3
angle \cdot \left\langle igg| inom{v_2 & v_3 \ & w_2 & w_3 \end{array} igg|, - igg| inom{v_1 & v_3 \ & w_1 & w_3 \end{array} igg|, igg| inom{v_1 & v_2 \ & w_1 & w_2 \end{array} igg|
ight
angle = 0 \end{aligned}$$

Definition.

The **cross product** of $\vec{v} = \langle v_1, v_2, v_3 \rangle$ and $\vec{w} = \langle w_1, w_2, w_3 \rangle$ is the *vector*:

$$ec{v} imesec{w}=\left\langle \left|egin{array}{cc} v_2 & v_3 \ w_2 & w_3 \end{array}
ight|,-\left|egin{array}{cc} v_1 & v_3 \ w_1 & w_3 \end{array}
ight|,\left|egin{array}{cc} v_1 & v_2 \ w_1 & w_2 \end{array}
ight|
ight
angle$$

For nonzero vectors $\vec{v}, \vec{w} \in \mathbb{R}^3$, their cross product $\vec{v} \times \vec{w}$ is perpendicular to both \vec{v} and \vec{w} .

Properties of the Cross Product

 $\vec{v} \times \vec{0} = \vec{0}$

2.

 $ec{v}\cdot(ec{v} imesec{w})=ec{w}\cdot(ec{v} imesec{w})=0$

3.

4.	
	$(sec v) imes (rec w)=(rs)(ec v imesec w), r,s\in \mathbb{R}$
5.	
	$(ec{a}+ec{b}) imesec{c}=ec{a} imesec{c}+ec{b} imesec{c}$
6.	
	$ec{a} imes(ec{b}+ec{c})=ec{a} imesec{b}+ec{a} imesec{c}$
7.	
	$ec{a} \cdot (ec{b} imes ec{c}) = egin{bmatrix} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ c_1 & c_2 & c_3 \end{bmatrix}$

8.

 $ec{a} imes (ec{b} imes ec{c}) = (ec{a} \cdot ec{c}) ec{b} - (ec{a} \cdot ec{b}) ec{c}$

9.

Given $\vec{v}, \vec{w} \neq \vec{0}$ in \mathbb{R}^3 , there are exactly two *unit* vectors in \mathbb{R}^3 which are perpendicular to both \vec{v} and \vec{w} . Namely:

$$\pm rac{ec{v} imes ec{w}}{ec{v} imes ec{w} ec{v}}$$

10.

For $ec{v}, ec{w}
eq ec{0}$ in \mathbb{R}^3 ,

$$|ec{v} imes ec{w}| = |ec{v}| \, |ec{w}| \sin heta,$$

where θ is the angle ($0 \le \theta \le \pi$) between \vec{v} and \vec{w} .

11.

Two nonzero vectors $\vec{v}, \vec{w} \in \mathbb{R}^3$ are parallel to each other if and only if $\vec{v} \times \vec{w} = \vec{0}$. In particular,

 $\vec{v} imes \vec{v} = \vec{0}.$

Example.

Let two planes in \mathbb{R}^3 be given:

$$a_1x + b_1y + c_1z = d_1,$$

 $a_2x + b_2y + c_2z = d_2,$

where $\vec{n}_i := \langle a_i, b_i, c_i \rangle \neq \vec{0}$ (i = 1, 2). Suppose \vec{n}_1 and \vec{n}_2 are not parallel to each other. Then, the two planes are non-parallel, and the intersection of the two planes is a line parallel to the vector $\vec{v} = \vec{n}_1 \times \vec{n}_2$. Note that the vector \vec{v} is nonzero, since \vec{n}_1 and \vec{n}_2 are by assumption non-parallel.

Distance Between a Point and a Plane

Given a plane in \mathbb{R}^3 corresponding to:

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0,$$

The (minimal) distance between a point $P \in \mathbb{R}^3$ and the plane is:

$$d = \left| \mathrm{Proj}_{ec{n}} \overrightarrow{P_0 P}
ight| = \left| \overrightarrow{P_0 P} \cdot rac{ec{n}}{ec{ec{n}}ec{e$$

where $P_0=(x_0,y_0,z_0)$ and $ec{n}=\langle a,b,c
angle.$