Cross Product

Given a plane containing the origin which is the linear span of \vec{v} , \vec{w} , we want to find a normal vector \vec{n} perpendicular to it. To do so, observe that:

for both expressions are determinants of matrices with repeated rows. By the definition of the cofactor expansion along the first row, we have:

$$
\langle v_1,v_2,v_3\rangle\cdot\left\langle \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix}, -\begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix}, \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \right\rangle = 0
$$

$$
\langle w_1,w_2,w_3\rangle\cdot\left\langle \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix}, -\begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix}, \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \right\rangle = 0
$$

Definition.

The cross product of $\vec{v} = \langle v_1, v_2, v_3 \rangle$ and $\vec{w} = \langle w_1, w_2, w_3 \rangle$ is the vector:

$$
\vec{v}\times\vec{w}=\left\langle \left|\begin{array}{cc} v_2 & v_3\\ w_2 & w_3\end{array}\right|,-\left|\begin{array}{cc} v_1 & v_3\\ w_1 & w_3\end{array}\right|,\left|\begin{array}{cc} v_1 & v_2\\ w_1 & w_2\end{array}\right|\right\rangle
$$

For nonzero vectors $\vec{v},\vec{w} \in \mathbb{R}^3$, their cross product $\vec{v} \times \vec{w}$ is perpendicular to both \vec{v} and $\vec{w}.$

Properties of the Cross Product [1.](#page-0-0)

 $\vec{v}\times\vec{0}=\vec{0}$

[2.](#page-0-1)

 $\vec{v}\cdot(\vec{v}\times\vec{w})=\vec{w}\cdot(\vec{v}\times\vec{w})=0$

[3.](#page-1-0)

[4.](#page-1-1) [5.](#page-1-2) [6.](#page-1-3) [7.](#page-1-4) $(s\vec{v}) \times (r\vec{w}) = (rs)(\vec{v} \times \vec{w}), \quad r, s \in \mathbb{R}$ $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$ $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ $\vec{a}\cdot(\vec{b}\times\vec{c})=\Big|$ ∣ ∣ ∣ ∣ $a_1 \quad a_2 \quad a_3$ b_1 b_2 b_3 ∣ ∣ ∣ ∣

[8.](#page-1-5)

 $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$

 c_1 c_2 c_3

[9.](#page-1-6)

Given $\vec{v},\vec{w}\neq \vec{0}$ in \mathbb{R}^3 , there are exactly two *unit* vectors in \mathbb{R}^3 which are perpendicular to both \vec{v} and $\vec{w}.$ Namely:

$$
\pm \frac{\vec{v} \times \vec{w}}{|\vec{v} \times \vec{w}|}
$$

[10.](#page-1-7)

For $\vec{v}, \vec{w} \neq \vec{0}$ in \mathbb{R}^3 ,

$$
|\vec{v} \times \vec{w}| = |\vec{v}| |\vec{w}| \sin \theta,
$$

where θ is the angle ($0 \leq \theta \leq \pi$) between \vec{v} and $\vec{w}.$

[11.](#page-1-8)

Two nonzero vectors $\vec{v},\vec{w} \in \mathbb{R}^3$ are parallel to each other if and only if $\vec{v}\times\vec{w}=\vec{0}.$ In particular,

 $\vec{v} \times \vec{v} = \vec{0}$.

Example.

Let two planes in \mathbb{R}^3 be given:

$$
a_1x + b_1y + c_1z = d_1,
$$

$$
a_2x + b_2y + c_2z = d_2,
$$

where $\vec{n}_i := \langle a_i, b_i, c_i \rangle \neq \vec{0}$ $(i = 1, 2).$ Suppose \vec{n}_1 and \vec{n}_2 are not parallel to each other. Then, the two planes are nonparallel, and the intersection of the two planes is a line parallel to the vector $\vec{v} = \vec{n}_1 \times \vec{n}_2$. Note that the vector \vec{v} is nonzero, since \vec{n}_1 and \vec{n}_2 are by assumption non-parallel.

Distance Between a Point and a Plane

Given a plane in \mathbb{R}^3 corresponding to:

$$
a(x-x_0)+b(y-y_0)+c(z-z_0)=0,
$$

The (minimal) distance between a point $P \in \mathbb{R}^3$ and the plane is:

$$
d = \left|\text{Proj}_{\vec{n}} \overrightarrow{P_0P}\right| = \left|\overrightarrow{P_0P}\cdot \frac{\vec{n}}{|\vec{n}|}\right| \, \Bigg|
$$

where $P_0 = (x_0, y_0, z_0)$ and $\vec{n} = \langle a, b, c \rangle$.