
Dot Product
Definition.
The dot product of two vectors  is:

>

Notice that:

If  is the angle ( ) between two nonzero vectors  and
, then:

or equivalently,

>

If  and  are orthogonal/perpendicular to each other, then 
; hence:

>

Conversely, if ,  are nonzero vectors and , then the
two vectors are orthogonal to each other.

If nonzero  are parallel to each other, then:

Projection
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⃗v, w⃗ ∈ Rn

⃗v ⋅ w⃗ = w⃗ ⋅ ⃗v =
n

∑
i=1

viwi.

(λa⃗) ⋅ ⃗b = λ(a⃗ ⋅ ⃗b), λ ∈ R.

(a⃗ + ⃗b) ⋅ ⃗c = a⃗ ⋅ ⃗c + ⃗b ⋅ ⃗c.

⃗v ⋅ ⃗v =
n

∑
i=1

v2
i = | ⃗v|2

θ 0 ≤ θ ≤ π ⃗v

w⃗

⃗v ⋅ w⃗ = | ⃗v| |w⃗| cos θ,

θ = arccos( ⋅ )⃗v

| ⃗v|

w⃗

|w⃗|

⃗v w⃗

θ = π/2

⃗v ⋅ w⃗ = | ⃗v| |w⃗| cos(π/2) = 0.

⃗v w⃗ ⃗v ⋅ w⃗ = 0

⃗v, w⃗

⃗v ⋅ w⃗ = { | ⃗v| |w⃗|  if  they point in the same direction;
− | ⃗v| |w⃗|  if they point in opposite directions.



Projection
Given two vectors , where , we can always express 
as the sum of a vector  which is parallel to , and a
vector  which is orthogonal to :

>

To find , we note that:

for some , since  and  are parallel. 
>

Taking the dot product of both sides of the equation  with 
, we have:

>

Hence,

>

so:

Note that  is the unit vector associated with .

Parameterization of a line in .
Let  be the origin of . Let  be a line in  which passes
through a given point , and is parallel to a vector 
. Each point  on  satisfies:

for some . 
>

On the other hand, we have:

⃗v, w⃗ w⃗ ≠ 0⃗ ⃗v

Projw⃗ ⃗v w⃗

⃗v⊥ w⃗

⃗v = Projw⃗ ⃗v + ⃗v⊥. (∗)

Projw⃗ ⃗v

Projw⃗ ⃗v = λw⃗

λ ∈ R Projw⃗ ⃗v w⃗

(∗) w⃗

⃗v ⋅ w⃗ = (Projw⃗ ⃗v + ⃗v⊥) ⋅ w⃗ = λw⃗ ⋅ w⃗
=λ|w|2

+ ⃗v⊥ ⋅ w⃗
=0

.

λ = ⃗v ⋅ w⃗,
1

|w⃗|2

Projw⃗ ⃗v = λw⃗ = ( ⃗v ⋅ w⃗) w⃗ = ( ⃗v ⋅ ) ,

⃗v⊥ = ⃗v − Projw⃗ ⃗v.

1

|w⃗|2
w⃗

|w⃗|

w⃗

|w⃗|

w⃗

|w⃗| w⃗

Rn

O Rn L Rn

P0 ∈ Rn ⃗v ∈ Rn

P L

−−→
P0P = t ⃗v,

t ∈ R

−−→ −−→ −−→



>

Hence,

The line  is therefore described by the vector‑valued
function:

Distance Between a Point and a Line
Given any point , The (minimal) distance  between the
point  and the line  is:

Planes in 
Two non‑parallel vectors ,  in  determine a plane  in 
containing the origin. The plane  consists of all points 

such that  lies in the linear span of  and :

A plane in  containing a fixed point  is the set of points 
 such that:

where  and  are fixed non‑parallel vectors.

We focus first on a plane  which contains the origin. In this
case,  consists of points  such that:

for some .

−−→
P0P =

−−→
OP −

−−→
OP0 .

−−→
OP =

−−→
OP0 + t ⃗v.

L

⃗l (t) =
−−→
OP0 + t ⃗v, t ∈ R.

Q ∈ R3
d

Q L

d = ∣∣∣
−−→
P0Q − Proj ⃗v

−−→
P0Q

∣∣∣ .

R3

⃗v w⃗ R3 P R3

P P ∈ R3

−−→
OP ⃗v w⃗

−−→
OP = s ⃗v + tw⃗, s, t ∈ R.

R3 P0

P ∈ R3

−−→
P0P ∈ Span { ⃗v, w⃗} = {s ⃗v + tw⃗ | s, t ∈ R},

⃗v w⃗

P

P (x, y, z)

⎛⎜⎝
x

y

z
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Theorem.
>

There exists a vector , such that  consists of all
points  which satisfy:

Conversely, given , the set of points 
which satisfy:

form a plane in . That is, there are non‑parallel vectors 
, such that  satisfies  if and

only if:

for some .

In general, a plane  (not necessarily containing the origin) is
described by an equation of the form:

where  is a point which lies on . Note that for

all , we have . In other words,  is
perpendicular to . We call  a normal vector to the
plane. Expanding and regrouping the terms in the equation ,

a plane in  corresponds to the set of solutions  to an
equation of the form:

⟨a, b, c⟩ ≠ 0⃗ P

(x, y, z)

ax + by + cz = 0.

⟨a, b, c⟩ ≠ 0⃗ (x, y, z)

ax + by + cz = 0

R3

⃗v, w⃗ ∈ R3 (x, y, z) ax + by + cz = 0

⎛⎜⎝
x

y

z

⎞⎟⎠ = s ⃗v + tw⃗,

s, t ∈ R

P

a(x − x0) + b(y − y0) + c(z − z0) = 0, (∗)

P0 = (x0, y0, z0) P

P ∈ P
−−→
P0P ⋅ ⟨a, b, c⟩ = 0

−−→
P0P

⟨a, b, c⟩ ⟨a, b, c⟩

(∗)
R3 (x, y, z)

ax + by + cz = d.


