Dot Product

Definition.

The **dot product** of two vectors $ec{v}, ec{w} \in \mathbb{R}^n$ is:

$$ec{v}\cdotec{w}=ec{w}\cdotec{v}=\sum_{i=1}^n v_iw_i.$$

>

Notice that:

$$egin{aligned} &(\lambdaec{a})\cdotec{b} = \lambda(ec{a}\cdotec{b}), \quad \lambda\in\mathbb{R}, \ &(ec{a}+ec{b})\cdotec{c} = ec{a}\cdotec{c}+ec{b}\cdotec{c}, \ &ec{v}\cdotec{v} = \sum_{i=1}^n v_i^2 = ec{v}ec{v}ec{}^2 \end{aligned}$$

If θ is the angle ($0 \le \theta \le \pi$) between two nonzero vectors \vec{v} and \vec{w} , then:

$$\vec{v}\cdot\vec{w} = |\vec{v}| \, |\vec{w}|\cos\theta,$$

or equivalently,

$$heta = rccosigg(rac{ec v}{ec ec vec} \cdot rac{ec w}{ec ec vec}
ight)$$

>

If \vec{v} and \vec{w} are orthogonal/perpendicular to each other, then $\theta = \pi/2$; hence:

$$ec{v}\cdotec{w}=ec{v}ec{v}ec{w}ec{\cos(\pi/2)}=0.$$

>

Conversely, if \vec{v} , \vec{w} are nonzero vectors and $\vec{v} \cdot \vec{w} = 0$, then the two vectors are orthogonal to each other.

If nonzero \vec{v}, \vec{w} are parallel to each other, then:

 $ec{v} \cdot ec{w} = \left\{ egin{array}{cc} ec{v} ec{v} ec{v} ec{w} ec{v} & ext{if they point in the same direction;} \ - ec{v} ec{v} ec{v} ec{w} ec{v} ec{$

Projection

Given two vectors \vec{v}, \vec{w} , where $\vec{w} \neq \vec{0}$, we can always express \vec{v} as the sum of a vector $\operatorname{Proj}_{\vec{w}}\vec{v}$ which is parallel to \vec{w} , and a vector \vec{v}_{\perp} which is orthogonal to \vec{w} :

$$ec{v} = \operatorname{Proj}_{ec{v}} ec{v} + ec{v}_{\perp}.$$
 (*)

>

>

To find $\operatorname{Proj}_{\vec{w}} \vec{v}$, we note that:

$$\mathrm{Proj}_{ec w}ec v = \lambdaec w$$

for some $\lambda \in \mathbb{R}$, since $\operatorname{Proj}_{ec w} ec v$ and ec w are parallel.

Taking the dot product of both sides of the equation (*) with \vec{w} , we have:

$$ec{v}\cdotec{w}=(\mathrm{Proj}_{ec{w}}ec{v}+ec{v}_{ot})\cdotec{w}=\underbrace{\lambdaec{w}\cdotec{w}}_{=\lambdaec{w}ec{v}^2}+ec{v}_{ot}\cdotec{w}_{=0}.$$

>

Hence,

$$\lambda = rac{1}{\leftert ec w
ightec ^2} ec v \cdot ec w,$$

>

so:

$$\mathrm{Proj}_{ec w}ec v = \lambda ec w = \left(rac{1}{\left|ec w
ight|^2}ec v \cdot ec w
ight)ec w = \left(ec v \cdot rac{ec w}{\left|ec w
ight|}
ight)rac{ec w}{\left|ec w
ight|}, \ ec v_{\perp} = ec v - \mathrm{Proj}_{ec w}ec v.$$

Note that $\frac{\vec{w}}{|\vec{w}|}$ is the unit vector associated with \vec{w} .

Parameterization of a line in \mathbb{R}^n .

Let O be the origin of \mathbb{R}^n . Let L be a line in \mathbb{R}^n which passes through a given point $P_0 \in \mathbb{R}^n$, and is parallel to a vector $\vec{v} \in \mathbb{R}^n$. Each point P on L satisfies:

$$\overrightarrow{P_0P} = t\vec{v},$$

for some $t \in \mathbb{R}$. > On the other hand, we have:

$$\overrightarrow{P_0P} = \overrightarrow{OP} - \overrightarrow{OP_0}.$$

>

Hence,

$$\overrightarrow{OP} = \overrightarrow{OP_0} + t \vec{v}.$$

The line *L* is therefore described by the vector-valued function:

$$ec{l}(t)=\overrightarrow{OP_0}+tec{v},\quad t\in\mathbb{R}.$$

Distance Between a Point and a Line

Given any point $Q \in \mathbb{R}^3$, The (minimal) distance *d* between the point *Q* and the line *L* is:

$$d = \left| \overrightarrow{P_0 Q} - \operatorname{Proj}_{ec{v}} \overrightarrow{P_0 Q}
ight|.$$

Planes in \mathbb{R}^3

Two non-parallel vectors \vec{v} , \vec{w} in \mathbb{R}^3 determine a plane \mathcal{P} in \mathbb{R}^3 containing the origin. The plane \mathcal{P} consists of all points $P \in \mathbb{R}^3$ such that \overrightarrow{OP} lies in the linear span of \vec{v} and \vec{w} :

$$\overrightarrow{OP}=sec{v}+tec{w},\quad s,t\in\mathbb{R}.$$

A plane in \mathbb{R}^3 containing a fixed point P_0 is the set of points $P \in \mathbb{R}^3$ such that:

$$\overrightarrow{P_0P}\in \mathrm{Span}\left\{ec{v},ec{w}
ight\}=\{sec{v}+tec{w}\,|\,s,t\in\mathbb{R}\},$$

where \vec{v} and \vec{w} are fixed non-parallel vectors.

We focus first on a plane \mathcal{P} which contains the origin. In this case, \mathcal{P} consists of points (x, y, z) such that:

$$egin{pmatrix} x \ y \ z \end{pmatrix} = s egin{pmatrix} v_1 \ v_2 \ v_3 \end{pmatrix} + t egin{pmatrix} w_1 \ w_2 \ w_3 \end{pmatrix}$$

for some $s,t \in \mathbb{R}$.

Theorem.

>

There exists a vector $\langle a, b, c \rangle \neq \vec{0}$, such that \mathcal{P} consists of all points (x, y, z) which satisfy:

$$ax + by + cz = 0$$

Conversely, given $\langle a,b,c
angle \neq \vec{0}$, the set of points (x,y,z) which satisfy:

$$ax + by + cz = 0$$

form a plane in \mathbb{R}^3 . That is, there are non-parallel vectors $\vec{v}, \vec{w} \in \mathbb{R}^3$, such that (x, y, z) satisfies ax + by + cz = 0 if and only if:

$$egin{pmatrix} x \ y \ z \end{pmatrix} = sec v + tec w,$$

for some $s, t \in \mathbb{R}$.

In general, a plane \mathcal{P} (not necessarily containing the origin) is described by an equation of the form:

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0,$$
 (*)

where $P_0 = (x_0, y_0, z_0)$ is a point which lies on \mathcal{P} . Note that for all $P \in \mathcal{P}$, we have $\overrightarrow{P_0P} \cdot \langle a, b, c \rangle = 0$. In other words, $\overrightarrow{P_0P}$ is perpendicular to $\langle a, b, c \rangle$. We call $\langle a, b, c \rangle$ a **normal** vector to the plane. Expanding and regrouping the terms in the equation (*), a plane in \mathbb{R}^3 corresponds to the set of solutions (x, y, z) to an equation of the form:

$$ax + by + cz = d.$$