\bullet

Properties of the Determinant

Let A be an $n \times n$ matrix.

$$
\det A = \det A^\top,
$$

where A^{\top} is the transpose of A , defined by $A_{ij}^{\top} = A_{ji}$. This follows from the fact that $\det A$ may be computed from the cofactor expansion along any row or column.

• If A is an upper or lower triangular matrix, then $\det A$ is equal to the product of its diagonal entries:

$$
\det \begin{pmatrix} a_{11} & * & * & * \\ 0 & a_{22} & * & * \\ & & & & \\ 0 & 0 & \ddots & * \\ 0 & 0 & 0 & a_{nn} \end{pmatrix} = a_{11}a_{22}\cdots a_{nn}
$$

In particular, the determinant of the identity matrix is equal to one.

 \bullet If one row or one column of A consists entirely of zeroes, then $\det A = 0.$

$$
\det\begin{pmatrix} 1 & 2 & 3 & -5 \\ 0 & 0 & 0 & 0 \\ 3 & 4 & -7 & 9 \\ 0 & 3 & 1 & 8 \end{pmatrix} = 0
$$

$$
\det\begin{pmatrix} 1 & 2 & 0 & -5 \\ 6 & -7 & 0 & 3 \\ 3 & 4 & 0 & 9 \\ 0 & 3 & 0 & 8 \end{pmatrix} = 0
$$

- If a matrix B is obtained from a square matrix A by switching two rows, then $\det B = - \det A$.
- If one row (column) of A is equal to a scalar multiple of another row (column), then $\det A = 0$.
- The determinant of an elementary matrix is nonzero.

• If E is an $n \times n$ elementary matrix, then $\det(EA) = (\det E)(\det A).$ $n \times n$

Theorem.

A is invertible if and only if $\det A \neq 0$.

Proof.

[>](#page-1-0)

By a previous result, A is invertible if and only if it is row equivalent to I .

[>](#page-1-1)

Suppose A is invertible, then there exist elementary matrices E_1, E_2, \ldots, E_k such that:

$$
E_k\cdots E_2E_1A=I.
$$

We have:

$$
(\det E_k)\cdots (\det E_2)(\det E_1)(\det A)=\det I=1
$$

Hence, $\det A \neq 0$.

[>](#page-1-2)

If A is not invertible, then it is row equivalent to a matrix with a row consisting entirely of zeroes. Hence, there exist elementary matrices $E_1, E_2, \ldots E_k$, such that:

 $0 = det(E_k ... E_2 E_1 A) = (det E_k) \cdots (det E_2)(det E_1)(det A).$

Since the determinants of elementary matrices are nonzero, we conclude that $\det A = 0$.

◼

Remark.

Suppose a matrix A is invertible, then there are elementary matrices E_1, \ldots, E_k such that:

$$
E_k\cdots E_1A=I,
$$

or equivalently:

 $A = E_1^{-1} \cdots E_k^{-1}.$

Since the inverse of an elementary matrix is an elementary matrix, we conclude that a matrix A is invertible if and only if it is a product of elementary matrices.

Theorem.

Let A, B be $n \times n$ matrices. Then,

 $\det(AB) = (\det A)(\det B).$

Proof.

[>](#page-2-0)

Suppose B is non-invertible. Then, $\det(B) = 0$. Moreover, there exists a nonzero $\vec{v} \in \mathbb{R}^n$ such that $B\vec{v} = \vec{0}.$ We have:

[>](#page-2-1)

$$
(AB)\vec{v} = A(B\vec{v}) = A\vec{0} = \vec{0}.
$$

In other words, the matrix equation $(AB)\vec{x} = \vec{0}$ has a nonzero solution, which implies that AB is non-invertible. Hence, $0 = det(AB) = det(A) det(B).$

[>](#page-2-2)

Suppose B is invertible but A is not. Then, $\det(A) = 0$, and there exists $\vec{v} \neq 0$ such that $A\vec{v} = \vec{0}$. Let $\vec{w} = B^{-1}\vec{v} \neq 0$ (note that B^{-1} is invertible).

[>](#page-2-3)

We have:

$$
(AB)\vec{w} = (AB)B^{-1}\vec{v} = A(BB^{-1})\vec{v} = A\vec{v} = \vec{0}.
$$

So, $(AB)\vec{x} = \vec{0}$ has a nonzero solution. By the same argument as before, we conclude that in this case $\det(AB) = \det(A)\det(B)$. [>](#page-3-0)

Now, suppose A and B are both invertible. There are elementary matrices E_1, \ldots, E_k such that $A = E_1 E_2 \cdots E_k$. Hence:

$$
\det(AB) = \det(E_1 \cdots E_k B) = \det(E_1) \cdots \det(E_k) \det(B) = \det(A) \det(B).
$$

This follows from the fact that $\det(EC) = \det(E) \det(C)$ for any $n \times n$ elementary matrix E and $n \times n$ matrix C . Franchieved and $n \times n$ matrix C .

External that $\det(AB) = \det(A)\det(B) = \det(BA)$, even if $AB \neq BA$

Frollary.

A is invertible, then:

◼

Note that $\det(AB) = \det(A)\det(B) = \det(BA)$, even if $AB \neq BA$.

Corollary. If A is invertible, then:

$$
\det(A^{-1}) = \frac{1}{\det A}.
$$

Adjoint of a Matrix

The **adjoint** of an $n \times n$ matrix A is the $n \times n$ matrix $\text{adj}A = ((\text{adj }A)_{ij})$ defined by:

$$
({\rm adj}\, A)_{ij} = (-1)^{i+j} \, |M_{ji}|\,.
$$

$$
{\rm adj}\, A = \left(\begin{array}{cccc} (-1)^{1+1} \, |M_{11}| & (-1)^{1+2} \, |M_{21}| & \cdots & (-1)^{1+n} \, |M_{n1}| \\ \vdots & \cdots & \cdots & \vdots \\ (-1)^{n+1} \, |M_{1n}| & \cdots & \cdots & (-1)^{n+n} \, |M_{nn}| \end{array} \right)
$$

Example.

[>](#page-3-1)

$$
adj \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}
$$

Observe that:

$$
\begin{aligned} (A(\operatorname{adj} A))_{ij} &= \sum_{k=1}^n A_{ik} (\operatorname{adj} A)_{kj} \\ &= \sum_{k=1}^n a_{ik} (-1)^{k+j} \, |M_{jk}| = \left\{ \begin{aligned} \det A &\quad \text{if $i = j$}, \\ 0 &\quad \text{if $i \neq j$}. \end{aligned} \right. \end{aligned}
$$

And similarly for $(\text{adj }A)A$. $A)A.$

[>](#page-3-2)

Hence,

$$
A(\text{adj } A) = (\text{adj } A)A = (\text{det } A)I_n = \begin{pmatrix} \det A & 0 & \cdots & \cdots & 0 \\ 0 & \det A & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & \det A \end{pmatrix}
$$

If A is invertible, then $\det A \neq 0$, and we have:

$$
A^{-1} = \frac{1}{\det A} \text{adj} \, A
$$

Cramer's Rule

Suppose an $n \times n$ matrix A is invertible. To solve an equation of the form:

$$
A\vec{x} = \vec{b},
$$

we multiply both sides of the equation by $A^{-1} = \frac{1}{\det A}$ adj A from the left, obtaining:

$$
\geq
$$

 \mathbf{I}

$$
\vec{x} = \frac{1}{\det A} (\text{adj } A) \vec{b}.
$$

The *i*-th entry of the vector $(\mathrm{adj}\,A)\vec{b} \in \mathbb{R}^n$ is given by:

$$
((\text{adj}\,A)\vec b)_i=\sum_{k=1}^n(\text{adj}\,A)_{ik}b_k=\sum_{k=1}^n(-1)^{i+k}\,|M_{ki}|\,b_k,
$$

 \mathbf{I}

which is the cofactor expansion along the i -th column of the matrix A_i obtained from A by replacing the *i*-th column of A by \vec{b} .

$$
A_i=\left(\begin{array}{cccc|c} a_{11} & a_{12} & \cdots & a_{1(i-1)} & b_1 & a_{1(i+1)} & \cdots & a_{1n} \\ a_{21} & a_{22} & \vdots & a_{2(i-1)} & b_2 & a_{2(i+1)} & \vdots & a_{2n} \\ \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{n(i-1)} & b_n & a_{n(i+1)} & \cdots & a_{nn} \end{array}\right)
$$

 $\, >$ Hence, the *i*-th entry of the vector $\vec{x} = \frac{1}{\det A} (\text{adj }A)\vec{b}$ is:

$$
x_i = \frac{\det A_i}{\det A}.
$$

This is known as Cramer's Rule.

Example.

Use Cramer's Rule to solve the following linear system:

 $-4x_1 + 7x_2 + 7x_3 = -8$ $x_1 + 6x_2 + 3x_3 = 5$ $6x_1 + 8x_2 - 4x_3 = 24$

Solution.

\mathbf{r}

This corresponds to the matrix equation:

$$
\begin{pmatrix} -4 & 7 & 7 \ 1 & 6 & 3 \ 6 & 8 & -4 \end{pmatrix} \vec{x} = \begin{pmatrix} -8 \ 5 \ 24 \end{pmatrix}
$$

[>](#page-5-1)

We have:

$$
|A_1| = \left| \begin{pmatrix} -8 & 7 & 7 \\ 5 & 6 & 3 \\ 24 & 8 & -4 \end{pmatrix} \right| = 300,
$$
\n
$$
|A2| = \left| \begin{pmatrix} -4 & -8 & 7 \\ 1 & 5 & 3 \\ 6 & 24 & -4 \end{pmatrix} \right| = 150,
$$
\n
$$
|A_3| = \left| \begin{pmatrix} -4 & 7 & -8 \\ 1 & 6 & 5 \\ 6 & 8 & 24 \end{pmatrix} \right| = -150.
$$

[>](#page-5-2)

Hence,

$$
x_1 = \frac{|A_1|}{|A|} = \frac{300}{150} = 2
$$

$$
x_2 = \frac{|A_2|}{|A|} = \frac{150}{150} = 1
$$

$$
x_3 = \frac{|A_3|}{|A|} = \frac{-150}{150} = -1
$$

Geometry of Vectors

Alternative notation for a vector in \mathbb{R}^n :

$$
\langle v_1, v_2, \ldots, v_n \rangle = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}
$$

The norm (or length, magnitude) of a vector $\vec{v} = \langle v_1, v_2, \ldots, v_n \rangle \in \mathbb{R}^n$ is:

$$
|\vec{v}| = \sqrt{\sum_{i=1}^n v_i^2}.
$$

Note that:

$$
|\vec{v}| = 0 \Leftrightarrow \vec{v} = \vec{0}.
$$

For all $\lambda \in \mathbb{R}$,

$$
\lambda \in \mathbb{R},
$$
\n
$$
|\lambda \vec{v}| = \sqrt{\sum_{i=1}^{n} (\lambda v_i)^2}
$$
\n
$$
= \sqrt{\lambda^2 \sum_{i=1}^{n} v_i^2}
$$
\n
$$
= \sqrt{\lambda^2} \sqrt{\sum_{i=1}^{n} v_i^2}
$$
\n
$$
= |\lambda| |\vec{v}|
$$

Unit Vector

A vector of length 1 is called a unit vector. For $\vec{v} \neq \vec{0}$, the vector $\frac{1}{|\vec{v}|} \vec{v}$ has length:

$$
\left|\frac{1}{|\vec{v}|}\vec{v}\right|=\frac{1}{|\vec{v}|}|\vec{v}|=1.
$$

Definition.

We call $\frac{1}{\log \theta}$ the unit vector associated with \vec{v} . $\frac{1}{|\vec{v}|} \vec{v}$ the **unit vector associated with** \vec{v}

Intuitively speaking, the unit vector associated with \vec{v} captures the direction of \vec{v} , and ignores its length.

[>](#page-7-0)

Every nonzero vector \vec{v} has the form:

$$
\vec{v} = \lambda \vec{u}, \quad \lambda > 0,
$$

where $\vec{u} = \frac{1}{|\vec{v}|} \vec{v}$ is the unit vector associated with \vec{v} , and $\lambda = |\vec{v}|$ is the length of $\vec{v}.$

Dot Product

Definition.

The **dot product** of two vectors $\vec{v}, \vec{w} \in \mathbb{R}^n$ is:

$$
\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v} = \sum_{i=1}^n v_i w_i.
$$

[>](#page-7-1)

Notice that:

$$
(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b}), \quad \lambda \in \mathbb{R}.
$$

$$
(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}.
$$

$$
\vec{v} \cdot \vec{v} = \sum_{i=1}^{n} v_i^2 = |\vec{v}|^2
$$

If θ is the angle ($0 \le \theta \le \pi$) between two nonzero vectors \vec{v} and \vec{w}_t then:

$$
\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos \theta,
$$

or equivalently,

$$
\theta = \arccos \biggl(\frac{\vec{v}}{|\vec{v}|} \cdot \frac{\vec{w}}{|\vec{w}|} \biggr)
$$